{"title":"FRONT MATTER","authors":"Alexander W. Chao, W. Chou","doi":"10.1142/9789811209604_fmatter","DOIUrl":"https://doi.org/10.1142/9789811209604_fmatter","url":null,"abstract":"","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"115 17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126367912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accelerators and I","authors":"Chen Yang","doi":"10.1142/s1793626819300019","DOIUrl":"https://doi.org/10.1142/s1793626819300019","url":null,"abstract":"","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114867046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Future Prospects of Superconducting RF for Accelerator Applications","authors":"H. Padamsee","doi":"10.1142/s1793626819300081","DOIUrl":"https://doi.org/10.1142/s1793626819300081","url":null,"abstract":"Part I of this article provides a status update on the ongoing projects for both high-beta and low-beta applications. Some of these projects are already under production, others are perfecting prototypes and future plans. We first cover the funded projects and continue with the planned projects. The update naturally captures the state-of-the-art for superconducting RF (SRF) performance for applications in progress. Part II goes on to present a vision for future prospects for performance progress in the field, along with some advice about the likely fruitful R&D paths to follow. In general, the R&D paths chosen for discussion will benefit most SRF-based accelerators.","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129819411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Present and Future Accelerator-Based X-ray Sources: A Perspective","authors":"J. Hastings, L. Rivkin, G. Aeppli","doi":"10.1142/s1793626819300044","DOIUrl":"https://doi.org/10.1142/s1793626819300044","url":null,"abstract":"Accelerator-based X-ray sources have contributed uniquely to the physical, engineering and life sciences. There has been a constant development of the sources themselves as well as of the necessary X-ray optics and detectors. These advances have combined to push X-ray science to the forefront in structural studies, achieving atomic resolution for complex protein molecules, to meV scale dynamics addressing problems ranging from geoscience to high-temperature superconductors, and to spatial resolutions approaching 10[Formula: see text]nm for elemental mapping as well as three-dimensional structures. Here we discuss accelerator-based photon science in the frame of imaging and highlight the importance of optics, detectors and computation/data science as well as the source technology. We look to a bright future for X-ray systems, integrating all components from accelerator sources to digital image production algorithms, and highlight aspects that make them unique scientific tools.","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128629195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Future Prospects for Accelerator R&D","authors":"M. Tigner","doi":"10.1142/s179362681930007x","DOIUrl":"https://doi.org/10.1142/s179362681930007x","url":null,"abstract":"Based on their great economic value, many current uses and state of the technology, the future of accelerators in medicine, industry, homeland security and research is assured for a long time to come. We review some of the areas in which R&D could have an important impact in the future and mention a few examples.","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115339384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prospects for Electric Dipole Moment Measurement Using Electrostatic Accelerators","authors":"R. Talman","doi":"10.1142/s1793626819300147","DOIUrl":"https://doi.org/10.1142/s1793626819300147","url":null,"abstract":"Electrostatic accelerators have played a glorious role in physics, especially for low energy atomic and nuclear physics and electron microscopy. But circular accelerators have depended almost exclusively on the far greater bending force possible with static magnetic, rather than electric, fields. There is a potential exception to this magnetic bending monopoly for experimental high energy elementary particle physics — it is the possibility of measuring the electric dipole moments (EDMs) of charged elementary particles, such as proton, deuteron, or electron, using an electrostatic storage ring. Any such non-zero EDM would demonstrate violation of both parity (P) and time-reversal (T) invariance. One way of understanding the preponderance of matter over anti-matter in the present-day universe pre-supposes the existence of violations of P and T substantially greater than are allowed by the “standard model” of elementary particle physics. This provides the leading motivation for measuring EDMs. Currently, only upper limits are known for these EDMs. The very same smallness that makes it important to determine them makes their measurement difficult. Accepting as obvious the particle physics motivation, this paper concentrates on the accelerator physics of the (not very) high energy electrostatic accelerators needed for EDM measurements. Developments already completed are emphasized. Impressive advances have been made in the diagnostic tools, spin control and polarimetry that will make EDM measurement possible. Ring design for minimizing spin decoherence and limiting systematic EDM errors is presented. There have, however, been worrisome indications from low energy rings, concerning beam current limitations. A prototype ring design is proposed for investigating and addressing this concern.","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125135553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Science of High Energy, Single-Cycled Lasers","authors":"J. Wheeler, G. Mourou, T. Tajima","doi":"10.1142/s1793626819300123","DOIUrl":"https://doi.org/10.1142/s1793626819300123","url":null,"abstract":"With the advent of the Thin Film Compression, high energy single-cycled laser pulses have become an eminent path to the future of new high-field science. An existing CPA high power laser pulse such as a commercially available PW laser may be readily converted into a single-cycled laser pulse in the 10PW regime without losing much energy through the compression. We examine some of the scientific applications of this, such as laser ion accelerator called single-cycle laser acceleration (SCLA) and bow wake electron acceleration. Further, such a single-cycled laser pulse may be readily converted through relativistic compression into a single-cycled, X-ray laser pulse. We see that this is the quickest and very innovative way to ascend to the EW (exawatt) and zs (zeptosecond) science and technology. We suggest that such X-ray laser pulses have a broad and new horizon of applications. We have begun exploring the X-ray crystal (or nanostructured) wakefield accelerator and its broad and new applications into gamma rays. Here, we make a brief sketch of our survey of this vista of the new developments.","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129323401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Future Prospects of Gamma–Gamma Collider","authors":"Tohru Takahashi","doi":"10.1142/s1793626819300111","DOIUrl":"https://doi.org/10.1142/s1793626819300111","url":null,"abstract":"Gamma–gamma colliders based on backward Compton scattering have been discussed mainly as an option for high energy electron–positron linear colliders, aiming to play a complementary role in energy frontier physics. The flexibility of gamma-ray beam by the Compton scheme, however, allows us to apply them to physics in a wide energy range, from MeV to TeV. In this paper, we review the future prospects of gamma–gamma colliders including recent discussions about Higgs boson factories and mid- and low-energy colliders as well as the option for electron–positron linear colliders.","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116948829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Prospect for Accelerator Superconducting Magnets: HL-LHC and Beyond","authors":"L. Rossi, D. Tommasini","doi":"10.1142/s1793626819300093","DOIUrl":"https://doi.org/10.1142/s1793626819300093","url":null,"abstract":"Superconducting Magnets for High Energy Physics Accelerators are entering a new era. The successful operation of the LHC in the last decade has marked the summit of the Nb-Ti technology exploitation initiated by the Tevatron. Now, after two decades of development, Nb3Sn technology for accelerators is becoming mature and the construction of the high luminosity LHC (HL-LHC) magnets will be the most tangible sign of the new phase, with magnets that will operate well beyond the symbolic threshold of 10 T. In addition, 30 years after its discovery, the high temperature superconductors (HTSs) for accelerator magnets are under development and test, to understand if these materials can enable the 20 T range for next accelerator/colliders foreseen after 2030. The paper reviews the main issues and the criticalities of the magnets’ development for the next future project, HL-LHC, and gives the prospect for the design and technological effort that is underway in magnet technology for the energy Frontier (FCC/HE-LHC).","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116454065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial Preface","authors":"Alexander W. Chao, W. Chou","doi":"10.1142/s179362681901001x","DOIUrl":"https://doi.org/10.1142/s179362681901001x","url":null,"abstract":"","PeriodicalId":376234,"journal":{"name":"Reviews of Accelerator Science and Technology","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116374953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}