HydrologyPub Date : 2024-01-31DOI: 10.3390/hydrology11020017
B. Baziak, Marek Bodziony, Robert Szczepanek
{"title":"Mountain Streambed Roughness and Flood Extent Estimation from Imagery Using the Segment Anything Model (SAM)","authors":"B. Baziak, Marek Bodziony, Robert Szczepanek","doi":"10.3390/hydrology11020017","DOIUrl":"https://doi.org/10.3390/hydrology11020017","url":null,"abstract":"Machine learning models facilitate the search for non-linear relationships when modeling hydrological processes, but they are equally effective for automation at the data preparation stage. The tasks for which automation was analyzed consisted of estimating changes in the roughness coefficient of a mountain streambed and the extent of floods from images. The Segment Anything Model (SAM) developed in 2023 by Meta was used for this purpose. Images from many years from the Wielka Puszcza mountain stream located in the Polish Carpathians were used as the only input data. The model was not additionally trained for the described tasks. The SAM can be run in several modes, but the two most appropriate were used in this study. The first one is available in the form of a web application, while the second one is available in the form of a Jupyter notebook run in the Google Colab environment. Both methods do not require specialized knowledge and can be used by virtually any hydrologist. In the roughness estimation task, the average Intersection over Union (IoU) ranges from 0.55 for grass to 0.82 for shrubs/trees. Ultimately, it was possible to estimate the roughness coefficient of the mountain streambed between 0.027 and 0.059 based solely on image data. In the task of estimation of the flood extent, when selecting appropriate images, one can expect IoU at the level of at least 0.94, which seems to be an excellent result considering that the SAM is a general-purpose segmentation model. It can therefore be concluded that the SAM can be a useful tool for a hydrologist.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140470755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-01-31DOI: 10.3390/hydrology11020018
Ismail Fathy, Gamal M. Abdel-Aal, M. Fahmy, Amira A. Fathy, Martina Zelenakova, Hany F. Abd-Elhamid, Jakub Raček, Ahmed Moustafa A. Moussa
{"title":"Assessing the Efficiency of Rainstorm Drainage Networks Using Different Arrangements of Grate Inlets","authors":"Ismail Fathy, Gamal M. Abdel-Aal, M. Fahmy, Amira A. Fathy, Martina Zelenakova, Hany F. Abd-Elhamid, Jakub Raček, Ahmed Moustafa A. Moussa","doi":"10.3390/hydrology11020018","DOIUrl":"https://doi.org/10.3390/hydrology11020018","url":null,"abstract":"Urban flooding is a problem faced by most countries because of climate change. Without storm drainage systems, negative impacts may occur, such as traffic problems and increasing groundwater levels, especially in lowlands. The implementation of storm drainage networks and their fittings in poor countries is affecting their economic development. Therefore, improving the efficiency of the storm drainage network is an important issue that should be considered. This paper aims to study the most appropriate position or arrangements of grate inlets to upgrade drainage efficiency at less cost. Different arrangements of grates were studied and their efficiency was determined. A comparison between the total grate’s efficiency was conducted and the best arrangement was selected. Additionally, a dimensional analysis equation was developed to determine the total efficiency of the system. Finally, the FLOW-3D program was used to simulate the laboratory results using different discharges and numbers of inlets. The error of calculation ranged between 5% and 8%. Therefore, the results indicated that this program is a powerful tool for predicting the discharge efficiency and velocity direction for large discharges. A comparison was made between this study and previous studies. The results indicated that the same trend existed. A new equation was developed to correlate discharge efficiency (E) with relative total discharge Q and number of inlets. The equation can be used by planning engineers to conduct initial planning of storm drainage layout systems and achieve cost saving.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140472483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-01-31DOI: 10.3390/hydrology11020016
Guadalupe Díaz-Gutiérrez, L. W. Daesslé, Francisco José Del-Toro-Guerrero, M. Villada-Canela, G. Seingier
{"title":"Vulnerability to Aquifer Pollution in the Mexican Wine Producing Valley of Guadalupe, México","authors":"Guadalupe Díaz-Gutiérrez, L. W. Daesslé, Francisco José Del-Toro-Guerrero, M. Villada-Canela, G. Seingier","doi":"10.3390/hydrology11020016","DOIUrl":"https://doi.org/10.3390/hydrology11020016","url":null,"abstract":"Groundwater pollution is one of the main challenges in our society, especially in semi-arid Mediterranean regions. This issue becomes especially critical in predominantly agricultural areas that lack comprehensive knowledge about the characteristics and functioning of their aquifer system. Vulnerability to groundwater pollution is defined as the sensitivity of the aquifer to being adversely affected by an imposed pollution load. For the Guadalupe aquifer, various indicators including water level depth, level variation, aquifer properties, soil composition, topography, impact on the vadose zone, and hydraulic conductivity were evaluated to establish spatial vulnerability categories ranging from very low to very high. Two pollution vulnerability scenarios (wet and dry) were studied. The results were compared with the analysis of nitrate concentration and distribution (2001, 2020, and 2021) from samples collected in the field. In the Calafia area, which predominantly relies on viticulture, the primary recharge inputs were identified in areas with a high vulnerability to pollution. Surprisingly, these vulnerable areas exhibited lower nitrate concentrations. This scenario underscores the need for effective management measures to safeguard aquifers in agricultural regions.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140473091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-01-28DOI: 10.3390/hydrology11020014
T. Hodson, K. Doore, Terry A. Kenney, Thomas M. Over, Muluken B. Yeheyis
{"title":"Ratingcurve: A Python Package for Fitting Streamflow Rating Curves","authors":"T. Hodson, K. Doore, Terry A. Kenney, Thomas M. Over, Muluken B. Yeheyis","doi":"10.3390/hydrology11020014","DOIUrl":"https://doi.org/10.3390/hydrology11020014","url":null,"abstract":"Streamflow is one of the most important variables in hydrology, but it is difficult to measure continuously. As a result, nearly all streamflow time series are estimated from rating curves that define a mathematical relationship between streamflow and some easy-to-measure proxy like water surface elevation (stage). Despite the existence of automated methods, most rating curves are still fit manually, which can be time-consuming and subjective. Although several automated methods exist, they vary greatly in performance because of the non-convex nature of the problem. In this work, we develop a parameterization of the segmented power law that works reliably with minimal data, which could serve operationally or as a benchmark for evaluating other methods. The model, along with test data and tutorials, is available as an open-source Python package called ratingcurve. The implementation uses a modern probabilistic machine-learning framework, which is relatively easy to modify so that others can improve upon it.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140491949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-01-27DOI: 10.3390/hydrology11020015
N. E. D. S. Pereira, S. Vinzón, Marcos Nicolas Gallo, Mariela Gabioux
{"title":"Meteorological Signal on Hydrodynamics in the Ilha Grande and Sepetiba Bays: Lag Effects and Coastal Currents","authors":"N. E. D. S. Pereira, S. Vinzón, Marcos Nicolas Gallo, Mariela Gabioux","doi":"10.3390/hydrology11020015","DOIUrl":"https://doi.org/10.3390/hydrology11020015","url":null,"abstract":"On the southeastern coast of Brazil, the bays of Ilha Grande and Sepetiba are linked by the Ilha Grande Channel, where remarkably strong currents have been consistently observed. Tidal forces cannot explain the strength of these currents. Previous researchers have focused on investigating factors like baroclinic effects due to salinity differences or seiches between two basins without a conclusive answer. This study aims to elucidate the role of remote meteorological effects within this complex hydrodynamic system. A numerical approach with a coastal model nested within an ocean model was employed, enabling an in-depth examination of the intricate interplay between meteorological and tidal forcings. The study revealed a significant finding: the lag in signal propagation plays a pivotal role in determining how these signals impact the dynamics of the bays. The astronomical signal exhibits a minimal lag along the coast (1 min) and leads to water level differences between the sea and the coastline, resulting in the generation of tidal currents at the bay entrances. On the other hand, the remote meteorological signal, with a stronger signal lag along the coast (4.92 h), leads to the creation of a water level difference between the bay entrances, inducing significant fluxes along the narrow Ilha Grande Channel.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140492673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-01-25DOI: 10.3390/hydrology11020013
Cole R. Weaver, Meghan Brockman, Neal D. Mundahl, William A. Arnold, Dylan Blumentritt, William Varela, Jeanne L. Franz
{"title":"Detection of Strobilurin Fungicides in Trout Streams within an Agricultural Watershed","authors":"Cole R. Weaver, Meghan Brockman, Neal D. Mundahl, William A. Arnold, Dylan Blumentritt, William Varela, Jeanne L. Franz","doi":"10.3390/hydrology11020013","DOIUrl":"https://doi.org/10.3390/hydrology11020013","url":null,"abstract":"The use of strobilurin fungicides in agriculture has increased steadily during the past 25 years, and although strobilurins have minimal water solubility, they regularly appear in surface waters, at times in concentrations approaching toxic levels for aquatic life. The present study examined concentrations of strobilurin fungicides in designated trout streams draining an agricultural watershed in southeastern Minnesota, USA, where fungicides may have contributed to a recent fish kill. Water samples (n = 131) were analyzed for the presence of five different strobilurin fungicides (azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin, trifloxystrobin). Samples were collected via grab and automated sampling during baseflow and stormflow events throughout an entire crop-growing season from sites on each of the three forks of the Whitewater River. Detection frequencies for the five strobilurins ranged from 44 to 82%. Fluoxastrobin and pyraclostrobin concentrations were above known toxic levels in 3% and 15% of total samples analyzed, respectively. The highest concentrations were detected in mid-summer (mid-June to mid-August) samples, coincident with likely strobilurin applications. Lower concentrations were present in water samples collected during the nonapplication periods in spring and fall, suggesting groundwater–stream interactions or steady leaching of fungicides from watershed soils or stream sediments. Further study is required to determine strobilurin concentrations in sediments, soils, and groundwater. Better tracking and guidance regarding strobilurin use is necessary to adequately protect aquatic life as fungicide use continues to increase.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139597454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-01-23DOI: 10.3390/hydrology11020012
Tatiane Souza Rodrigues Pereira, T. P. de Carvalho, T. Mendes, Guilherme da Cruz dos Reis, K. Formiga
{"title":"Hydrodynamic Modeling for Flow and Velocity Estimation from an Arduino Ultrasonic Sensor","authors":"Tatiane Souza Rodrigues Pereira, T. P. de Carvalho, T. Mendes, Guilherme da Cruz dos Reis, K. Formiga","doi":"10.3390/hydrology11020012","DOIUrl":"https://doi.org/10.3390/hydrology11020012","url":null,"abstract":"Flow is a crucial variable in water resources, although its determination is challenging. Rating curves are standard but have conceptual limitations, leading to significantly high uncertainties. Hydrodynamic models offer a more precise alternative, but they necessitate continuous measurements of velocities, which are complex and expensive to obtain. Thus, this article aimed to validate a hydrodynamic model that estimates flows and velocities in transient conditions based on water levels measured using a low-cost ultrasonic sensor. The results indicated that these estimates can be reliable if (1) hydrodynamic models are used to represent the flow, (2) the channel bed slope is well represented in the geometric data, and (3) Manning’s coefficients are accurately estimated during calibration. The calculated flow and velocity showed a maximum variation of 40% for the same water level compared to estimates using the rating curve. The model exhibited higher sensitivity in terms of the flow when varying the channel bed slope, highlighting the importance of topographic surveys for the estimates. The validity of the implemented model was assessed with experimental data, indicating precision and reliability for practical applications in natural channels.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139604310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-01-04DOI: 10.3390/hydrology11010008
I. Siarkos, Zisis Mallios, Pericles Latinopoulos
{"title":"An Integrated Framework to Assess the Environmental and Economic Impact of Fertilizer Restrictions in a Nitrate-Contaminated Aquifer","authors":"I. Siarkos, Zisis Mallios, Pericles Latinopoulos","doi":"10.3390/hydrology11010008","DOIUrl":"https://doi.org/10.3390/hydrology11010008","url":null,"abstract":"Groundwater nitrate contamination caused by the excessive use of nitrogen-based fertilizers has been widely recognized as an issue of significant concern in numerous rural areas worldwide. To mitigate nitrate contamination, corrective management practices, such as regulations on fertilizer usage, should be implemented. However, these measures often entail economic consequences that impact farmers’ income, and thus should be properly assessed. Within this context, an integrated framework combining the environmental and economic assessment of fertilization restrictions through multi-criteria decision analysis is presented in an effort to efficiently manage groundwater nitrate contamination in rural areas. For this task, various scenarios involving reductions (10%, 20%, 30%, 40% and 50%) in fertilizer application were investigated, evaluated and ranked in order to determine the most suitable option. The environmental assessment considered occurrences of nitrates in groundwater, with a specific emphasis on nitrate concentrations in water-supply wells, as obtained by a nitrate fate and transport model, while the economic analysis focused on the losses experienced by farmers due to the reduced fertilizer usage. Our case-study implementation showed that a 30% reduction in fertilization is the most appropriate option for the area being studied, highlighting the importance of adopting such an approach when confronted with conflicting outcomes among alternatives.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-01-01DOI: 10.3390/hydrology11010007
Luis Alberto Vargas-León, Juan Diego Giraldo-Osorio
{"title":"Analysis of Anomalies Due to the ENSO and Long-Term Changes in Extreme Precipitation Indices Using Data from Ground Stations","authors":"Luis Alberto Vargas-León, Juan Diego Giraldo-Osorio","doi":"10.3390/hydrology11010007","DOIUrl":"https://doi.org/10.3390/hydrology11010007","url":null,"abstract":"In this work, the influence of the El Niño Southern Oscillation (ENSO) on the Extreme Precipitation Indices (EPIs) was analyzed, and these ENSO-forced anomalies were compared with the long-term change in the EPIs. The annual time series of the EPIs were built from 880 precipitation stations that contained daily records between 1979 and 2022. These daily time series were filled, then the eleven (11) annual time series of the EPIs were built. To calculate ENSO-driven anomalies, the several phases of the phenomenon were considered (i.e., warm phase or El Niño years, cold phase or La Niña years, and normal or neutral years). For a particular EPI, the values calculated for the extreme phases of the ENSO were grouped, and these groups were compared with the group made up of the EPI values for the neutral years. To calculate the long-term change, two periods (1979–1996 and 2004–2021) were considered to group the EPI values. Maps showing the magnitude and significance of the assessed change/anomaly were constructed. The results allowed us to identify that the EPIs are generally “wetter” (i.e., higher extreme precipitation, longer wet periods, shorter dry periods, etc.) during La Niña hydrological years, while the opposite changes are observed during El Niño years. Furthermore, ENSO-induced anomalies are more important than the long-term changes.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139129494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-01-01DOI: 10.3390/hydrology11010006
S. Chaabane, K. Riahi, Slaheddine Khlifi, Emna Slama, M. Vanclooster
{"title":"Assessing the Performance of a Citizen Science Based Water Quality Monitoring Program for Nitrates Using Test Strips Implemented in the Medjerda Hydrosystem in Northern Tunisia","authors":"S. Chaabane, K. Riahi, Slaheddine Khlifi, Emna Slama, M. Vanclooster","doi":"10.3390/hydrology11010006","DOIUrl":"https://doi.org/10.3390/hydrology11010006","url":null,"abstract":"Recent technological progress in water management of hydrosystems has been made to deploy efficient and effective water quality monitoring systems (WQMS). Among these, a citizen science (CS)-based water quality monitoring (WQM) program using test strips is considered as a smart tool that may aid in the production of reliable, continuous, and comprehensive data on the water quality resources of hydrosystems over a broad range of spatial and temporal scales. In this case study, the objective is to evaluate the performance of a CS-based WQM for nitrates assessment using test water quality strips for the Medjerda watershed in Northern Tunisia. Overall, 137 samples were collected from 24 sampling sites and were analyzed by 33 participants. Citizens involved in the program were regrouped in five citizen types according to their socio-economic characteristics. Statistical tests, analysis of variance (ANOVA) and multiple correspondence analyses (MCA) were achieved to survey the goodness of fit of CS as a contribution to data collection in terms of the socio-economic profile of the participant. The results show that this tool could be reliable for obtaining the levels of nitrate in water samples. Water quality test trips can conveniently be used by citizens for WQM of nitrates when they are rigorously following the manufacturer’s instructions. Additional efforts in communication and training could help to improve the performance of this CS-WQM program for nitrate in the Medjerda watershed.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139125169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}