Gunnar Quante , Christiane Voigt , Martin Kaltschmitt
{"title":"Targeted use of paraffinic kerosene: Potentials and implications","authors":"Gunnar Quante , Christiane Voigt , Martin Kaltschmitt","doi":"10.1016/j.aeaoa.2024.100279","DOIUrl":"10.1016/j.aeaoa.2024.100279","url":null,"abstract":"<div><p>Aviation contributes to anthropogenic climate change mainly by contrails, CO<sub>2</sub> and NO<sub>x</sub> emissions, whereof contrails are considered the largest single contributor to the radiative forcing from aviation. Powering aircraft with kerosene containing fewer or no-aromatics, i.e., “Sustainable Aviation Fuels” (SAF) or hydroprocessed, fossil-based kerosene, can significantly reduce contrail climate forcing. However, such kerosene is currently scarcely available. Moreover, less than 10 % of the flights worldwide cause more than 80 % of the contrail climate forcing. Hence, this study investigates a targeted allocation of paraffinic, i.e., aromatics-free kerosene to flights and flight segments with the highest contrail climate forcing, by calculating the resulting contrail energy forcing (in J) on 844 364 flight trajectories worldwide departing from five large European airports in 2019.</p><p>The contrail radiative forcing integrated over contrail evolution (i.e., contrail energy forcing [J]) is simulated for a reference fleet powered with conventional kerosene of 14.1 m - % hydrogen content. 5 % of overall kerosene demand assumed to be paraffinic kerosene with 15.3 m - % hydrogen content is allocated via a uniform, a flight-specific and a segment-specific approach. The uniform allocation assumes that all flights receive the same blend of 5 % paraffinic kerosene. The other cases target 100 % paraffinic kerosene either to flights or segments with highest contrail energy forcing. Compared to the reference, the results indicate a reduction on contrail energy forcing by 4 %, 36 % and 55 %, respectively. For market shares of paraffinic kerosene up to 30 %, a segment specific allocation appears advantageous compared to a flight specific allocation. However, they might require airport and aircraft modifications. Uncertainties in contrail climate benefits can be reduced by providing additional information on kerosene properties and accurate meteorological data. Overall, this study highlights robust potentials of paraffinic kerosene to significantly reduce the climate forcing from aviation.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"23 ","pages":"Article 100279"},"PeriodicalIF":3.8,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000467/pdfft?md5=b2cc0ee57c63bea66a44682da4246144&pid=1-s2.0-S2590162124000467-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nkosinathi M. Manqele , Raeesa Moolla , Lisa Frost Ramsay
{"title":"The health and economic impacts of exposure to marine mobile emissions from ships in Durban port, South Africa","authors":"Nkosinathi M. Manqele , Raeesa Moolla , Lisa Frost Ramsay","doi":"10.1016/j.aeaoa.2024.100277","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100277","url":null,"abstract":"<div><p>South Africa remains an uncharted realm in terms of marine mobile emissions inventory and hence the impact of pollution from ships in coastal cities remains unknown. Such a void creates uncertainties about the extent of population exposure to pollution from ships, the health impact and economic value associated with the changes in policies for the port city of Durban.</p><p>This study was aimed at estimating the health and economic impact of marine mobile emissions and the health and economic benefits associated with improvement in air quality within the port city of Durban, which is under eThekwini municipality. The population exposure to particulate matter of less than 2.5 and 10 μm (PM<sub>2.5</sub> and PM<sub>10</sub>) and sulphur dioxide (SO<sub>2</sub>) from ships calling into Durban port were estimated using the AERMOD air dispersion model. The BenMAP modelling tool was then used to estimate the health impact and economic value of changes in emission of PM<sub>2.5</sub>, PM<sub>10</sub> and SO<sub>2</sub> from ships visiting Durban port. The reduction in emissions from ships was due to the reduction in the sulphur content of fuel from 3.5% to 0.5% that was implemented by the International Maritime Organisation (IMO) on the 01<sup>st</sup> of January 2020.</p><p>The results showed that PM<sub>2.5</sub> and PM<sub>10</sub> emissions reduced by 63% in 2020 compared to 2018, whilst SO<sub>2</sub> emissions reduced by 82% over the same period. The BenMAP results indicated that 49 premature mortalities were avoided in 2020 compared to 2018 since the IMO's forced reduction in sulphur content of fuel by 85% in 2020. These avoided cases on mortality were estimated a monetary value of R228 million using the World Bank’s 2016 estimates and R683 million using the USEPA Mean VSL estimate. Such monetary values were respectively equivalent to 0.05% and 0.2% of the eThekwini's GDP, which was estimated at R468 billion in 2016.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"23 ","pages":"Article 100277"},"PeriodicalIF":3.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000443/pdfft?md5=fe8bd6f201fbdbb1929c31d872a933ef&pid=1-s2.0-S2590162124000443-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saima Mohyuddin , Khan Alam , Bahadar Zeb , Muhammad Fahim Khokhar , Kaleem Anwar Mir , Anthony S. Wexler , Ehtiram ul Haq , Muhammad Ikram , Imran Shahid
{"title":"Characterization and source identification of PM2.5 during intense haze episodes in an urban environment of Lahore","authors":"Saima Mohyuddin , Khan Alam , Bahadar Zeb , Muhammad Fahim Khokhar , Kaleem Anwar Mir , Anthony S. Wexler , Ehtiram ul Haq , Muhammad Ikram , Imran Shahid","doi":"10.1016/j.aeaoa.2024.100276","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100276","url":null,"abstract":"<div><p>In the backdrop of persistent haze occurrences affecting Southeast Asia and Pakistan's environmental landscape, this study delves into an in-depth analysis of atmospheric Particulate Matter (PM2.5) during intense haze episodes prevalent in Lahore throughout October, November, and December 2019. Employing advanced analytical techniques encompassing Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive Spectroscopy (EDX), X-ray Diffraction (XRD), and Raman Spectroscopy (RS), this investigation meticulously scrutinized PM2.5 samples. The findings showcased substantial variability in PM2.5 concentrations, peaking notably in December within the range of 43.2–301 μgm<sup>−3</sup>, averaging 168 ± 88.3 μgm<sup>−3</sup>, whereas lower concentrations ranging from 30.9 to 268 μgm<sup>−3</sup>, with an average of 106 ± 66.1 μgm<sup>−3</sup>, were observed in October. These concentrations displayed correlations with meteorological parameters, demonstrating a direct association with relative humidity and varying relationships with temperature and wind speed. The maximal PM2.5 concentrations aligned with lower temperatures (19.1 °C), while higher temperatures (26.1 °C) coincided with the lowest concentrations, illustrating distinct relationships with relative humidity percentages and wind speeds. Advanced spectroscopic analyses (RS and XRD) confirmed the presence of various minerals and elements within PM2.5 samples, encompassing calcite, calcium aluminosilicate, hematite, barite, quartz, gypsum, organic carbon, and nineteen elements identified by EDX. Morphological evaluations unveiled diverse particle shapes, from round, pointed, and irregular to rod-like, and agglomerate structures. SEM investigations delineated distinctive groups of anthropogenic and geogenic particles, emphasizing emission sources such as automobile emissions, crop residue burning, biomass burning, construction activities, soil dust, and industrial emissions. This comprehensive study lays the groundwork for source apportionment, vital for understanding consequential impacts on climate, visibility, and human health, fostering future investigations in this domain.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"23 ","pages":"Article 100276"},"PeriodicalIF":3.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000431/pdfft?md5=850e731bf74eb158b498ed8c21057428&pid=1-s2.0-S2590162124000431-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparing modelled and measured exhaust gas components from two LNG-powered ships","authors":"Mikko Heikkilä , Niina Kuittinen , Tiia Grönholm","doi":"10.1016/j.aeaoa.2024.100275","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100275","url":null,"abstract":"<div><p>Bottom-up modelling is used frequently to estimate emissions produced by seagoing vessels, and the accuracy of modelling is dependent on the data the model is trained with. Observational studies can be used to increase the model accuracy. Here we compared data from two measuring campaigns conducted on board ships that use Liquefied Natural Gas (LNG) as primary fuel in internal combustion engines (ICE) in a diesel-electric setup with values obtained from the Ship Traffic Emission Assessment Model (STEAM).</p><p>The power demand for propulsion calculated using Automatic Identification System (AIS) data matched observations reasonably. The root mean square error between the modelled and observed power demand was 759–914 kW (28.6–34.5%) for the measured ropax vessel and 1869–1916 kW (16.7–17.1%) for the large cruise vessel over four voyages while the ships were underway. The discrepancy is largely explained by the auxiliary power demand, which was 4 times higher on the large cruise vessel than the model prediction.</p><p>Using meteorological data to estimate the increase of resistance did not improve the goodness of fit between modelled and observed engine power demand. STEAM model's base-specific fuel consumption calculation method fits observed values reasonably when the engine load is over 50%, but ICEs used in constant speed mode have increased consumption at lower engine loads compared to variable speed ICEs.</p><p>The share of pilot fuel of total energy consumption was found to play a significant role in the emission factors for measured exhaust gas compounds. More accurate functions to model fuel consumption and emissions were derived using the observed data.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"23 ","pages":"Article 100275"},"PeriodicalIF":3.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259016212400042X/pdfft?md5=f11af917e38ca03e2457fa39e04e963e&pid=1-s2.0-S259016212400042X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An absorption model of volatile organic compound by plant leaf: The most influential site in the absorption pathway","authors":"Mizuki Yamane, Akira Tani","doi":"10.1016/j.aeaoa.2024.100274","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100274","url":null,"abstract":"<div><p>Plant leaves absorb some kinds of volatile organic compounds (VOCs) and can contribute to air purification, as revealed by recent exposure experiments conducted at environmentally realistic concentrations in ppb (v/v). However, the mechanisms underlying VOC absorption by plants remain unclear. In this study, we applied Fick's first law of diffusion to a VOC absorption model for plant leaves to account for the VOC diffusion process via stomata, air-liquid partitioning, partitioning into the plasma membrane, and metabolic conversion of the VOC in plant cells. The resistance and concentration of VOCs at individual sites were determined using previously reported absorption data for aliphatic aldehydes and ketones in three plant species and the leaf morphology parameters obtained from leaf cross-section micrographs. The highest resistance occurred at the metabolic site (<em>r</em><sub><em>met</em></sub>), suggesting that VOC metabolic capacity is the most influential factor in VOC absorption. The resistance of stomata (<em>r</em><sub><em>s</em></sub>) or plasma membrane (<em>r</em><sub><em>pl</em></sub>) was the second highest, depending on compound family. Using the absorption rate data of <em>Q. acutissima</em>, it is revealed that metabolic site resistance <em>r</em><sub><em>met</em></sub> for methyl vinyl ketone is affected by light intensity. Thus, our VOC absorption model can determine the most influential site in the absorption pathway both for different VOCs and plant species. Our model can contribute to the development of plant-based strategies for controlling air pollution.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"23 ","pages":"Article 100274"},"PeriodicalIF":4.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000418/pdfft?md5=45560bbfd7501f9748bf639a7bbd5dc6&pid=1-s2.0-S2590162124000418-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of the ammonia emissions from conventional, mechanically ventilated broiler houses in Northern Ireland","authors":"C.C. Mulvenna, M.E.E. Ball","doi":"10.1016/j.aeaoa.2024.100273","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100273","url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) is an important pollutant, with serious negative environmental effects. With targets to reduce the total emissions at a United Kingdom level by 2030, it is important to quantify the emissions from contributing sectors to understand the current state for future mitigation strategies. The objective of this work was to establish an updated NH<sub>3</sub> emission factor for broiler production in Northern Ireland. NH<sub>3</sub> was measured on two identical broiler houses following the principles of the VERA 2.0 protocol across one year's production which encompassed at least six continuous measurement periods of a minimum of 24 h. The NH<sub>3</sub> emissions calculated during this work did not statistically differ between the site (P = 0.275) or house (P = 0.631). NH<sub>3</sub> emissions increased with progressing bird age (P < 0.001). NH<sub>3</sub> emissions were not influenced by outside environmental conditions. The current study updated the NH<sub>3</sub> emission factor for mechanically ventilated, confined broiler systems in Northern Ireland to 0.024 kg/bird place/year, 10.1 %TAN or 42.6 g/LU/d which is 29% lower in comparison to the previous the figure of 0.034 kg/bird place/year reported by The UK Ammonia Inventory.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"23 ","pages":"Article 100273"},"PeriodicalIF":3.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000406/pdfft?md5=c6597222d5d157a9912fe0279a929fb5&pid=1-s2.0-S2590162124000406-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141486909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Kazem Shahbazinasab , Mohammad Reza Rahimpour , Payam Setoodeh , Hamed Peyrovedin , Nargess Kargari
{"title":"Performance modification of an acid gas incinerator to reduce atmospheric pollutants impact: Energy management, HAZOP and LCA analyses","authors":"Mohammad Kazem Shahbazinasab , Mohammad Reza Rahimpour , Payam Setoodeh , Hamed Peyrovedin , Nargess Kargari","doi":"10.1016/j.aeaoa.2024.100272","DOIUrl":"10.1016/j.aeaoa.2024.100272","url":null,"abstract":"<div><p>In today's industrial landscape, energy management, process modification, and reduction of atmospheric concentrations of pollutants and safety risks have become paramount. This focus is driven by the need to address environmental concerns, economic efficiency, and the global energy and climate change crisis. In gas refineries, incinerators are widely used to convert deadly and environmentally polluting acid gases into less hazardous gases. Therefore, improving incinerator performance can significantly impact environmental, economic, and energy aspects. According to the results of an energy management study at the domestic gas processing plant, the acid gas incineration unit was identified as a significant energy use. Therefore, based on the effects of the performance of this incinerator from environmental and energy points of view, the mentioned unit was prioritized for modification in this work. For this purpose, incinerator performance was assessed using Promax simulation, and Hazard and Operability (HAZOP) analysis was employed to identify potential hazards. The simulations revealed that acid gas residence time was 0.81s, longer than the 0.6s initial design with the damper in place. This suggests damper removal is feasible. Removing the damper reduces residence time and lowers incinerator temperature, especially during startup. Therefore, temperature was considered as the keyword in the HAZOP study, and a number of recommendations were proposed to eliminate or mitigate the risks of system modification. Furthermore, the assistance of results obtained from energy management based on ISO 50001:2018 standards confirm improvements in energy efficiency and fuel consumption, which have positive economic and environmental impacts. Moreover, the study employs a Life Cycle Assessment (LCA) approach using SimaPro Software 9.5.0.1 and the CML-baseline method (Centrum voor Milieukunde Leiden) for environmental impact assessment. The results reveal that, across ten environmental impact categories, the modified project exhibits significantly reduced environmental impacts compared to its original state.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"23 ","pages":"Article 100272"},"PeriodicalIF":3.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259016212400039X/pdfft?md5=18f341f549c1de15fb6f27c52131ea46&pid=1-s2.0-S259016212400039X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141405132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Xu , Qian You , Zheng Zhang , Zimeng Zhao , Zhaotong Wang , Bidi Zhang , Xin Bo
{"title":"Insights into civil aviation emissions in China: Analysis of an emission inventory of air pollutants and the ChinaHighAirPollutants (CHAP) dataset","authors":"Xin Xu , Qian You , Zheng Zhang , Zimeng Zhao , Zhaotong Wang , Bidi Zhang , Xin Bo","doi":"10.1016/j.aeaoa.2024.100270","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100270","url":null,"abstract":"<div><p>The emissions from the civil aviation sector are a significant source of CO<sub>2</sub> and air pollutants, which represent a serious threat to ambient air quality and public health. To gain a deeper understanding of civil aviation airport emissions, it is imperative to develop a precise and comprehensive emission inventory of China's civil aviation airports. However, there are limited studies dedicated to analyzing and verifying the accuracy and completeness of China's civil aviation emission inventory. Here, this study explored pollution characteristics from temporal trends and spatial distribution perspectives based on a previously developed 2019–2020 high-resolution air pollution and CO<sub>2</sub> emission inventory of the landing and take-off (LTO) cycle of civil aviation airports in China and the ChinaHighAirPollutants (CHAP) dataset. Besides, this study established an empirical model to evaluate the relationship between the air pollutant emissions of China's civil aviation sector in 2019–2020 and the pollutant concentration from the CHAP dataset. Compared to those in 2019, the total NOx, CO, PM, and SO<sub>2</sub> emissions during the LTO phase in China's civil aviation sector in 2020 decreased by 14.29%–24.32%, and the average concentrations of NO<sub>2</sub>, CO, PM<sub>10</sub>, and SO<sub>2</sub> in 2020 decreased by 6.33%–9.45%. The eastern, central, and southern regions of China are characterized by high emissions of pollutants, a phenomenon closely related to the economic prosperity and tourism development in these areas. They tend to boast higher route densities, increasing air transport activity and consequently resulting in elevated emissions. In addition, NOx had the highest correlation coefficient in the empirical model, with a correlation coefficient of 0.603 in 2019. Our findings provide new insights into civil aviation emissions in China from the analysis of the emission inventory of air pollutants and the CHAP dataset and provide a new method for verifying the accuracy and completeness of China's civil aviation emission inventory.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"22 ","pages":"Article 100270"},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000376/pdfft?md5=1cd7d3e7fac18c6ede6fd077bd46eb9f&pid=1-s2.0-S2590162124000376-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141243647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gunnar Quante , Steffen Voß , Nils Bullerdiek , Christiane Voigt , Martin Kaltschmitt
{"title":"Hydroprocessing of fossil fuel-based aviation kerosene – Technology options and climate impact mitigation potentials","authors":"Gunnar Quante , Steffen Voß , Nils Bullerdiek , Christiane Voigt , Martin Kaltschmitt","doi":"10.1016/j.aeaoa.2024.100259","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100259","url":null,"abstract":"<div><p>Aviation contributes about 4 % of global anthropogenic climate forcing primarily by contrails, CO<sub>2</sub> and NO<sub>x</sub> emissions. Renewably sourced aviation kerosene can help to reduce the climate impact from CO<sub>2</sub> and from contrails, but so far, its production capacities are very small. Hence, the climate impact of using fossil fuel-based kerosene with a hydrogen content increased by hydroprocessing as short term mitigation measure is studied here. Therefore, the change in net energy forcing (ΔEF<sub>net</sub>) in 2019 is calculated as the sum of the change in contrail energy forcing (ΔEF<sub>contrail</sub>) and additional CO<sub>2</sub> emissions (ΔEF<sub>hydroprocessing</sub>) from aviation kerosene hydroprocessing (ΔEF<sub>net</sub> = ΔEF<sub>contrail</sub> + ΔEF<sub>hydroprocessing</sub>). The results show that hydroprocessed aviation kerosene can reduce the net energy forcing EF<sub>net</sub> by about 33 % with ΔEF<sub>hydroprocessing</sub> penalty of 5 %-points. Increasing the hydroprocessing severity increases the relative climate benefit, which is only slightly affected by the emissions factor for hydroprocessing or the choice of the time horizon. Data limitations about fuel composition and its effect on contrails and climate cause considerable uncertainties and the fuel's compliance with specification standards needs consideration. This study on the climate effect of hydroprocessed fossil kerosene can help to assess near-term measures to reduce the climate impact from aviation.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"22 ","pages":"Article 100259"},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000261/pdfft?md5=373b2138d64d9499a4f0913773ac6db8&pid=1-s2.0-S2590162124000261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating PM levels on an underground metro platform by exploring a new model-based factor research","authors":"Minghui Tu, Ulf Olofsson","doi":"10.1016/j.aeaoa.2024.100261","DOIUrl":"10.1016/j.aeaoa.2024.100261","url":null,"abstract":"<div><p>Over recent decades, the adverse impacts of airborne particles on human health have received wide attention. Elevated PM concentrations on underground platforms might pose a significant public health issue within underground metro systems. This study explores the impact of introducing a new type of train on the concentration of airborne particles on an underground metro platform through statistical modelling, analyses interactions between various factors, and estimates air quality on underground platforms after introducing a new type of train. Based on the data from a long-term field measurement, a linear mixed model, the multi-factor interaction model, which is an expansion of a previous multi-factor model, explored the impacts of train operations, passenger flow, urban background PM levels, ventilation, nighttime maintenance work, and their interactions on hourly PM10, PM2.5, and PM1 values on the platform. The model results show a positive correlation between those factors and platform PM10, PM2.5 and PM1 values, with significant interactions among these factors. The new model has a higher estimate quality than the previous model. Based on the combination of the model and measurement results, the levels of underground PM decreased significantly after replacing the old type of trains with new ones.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"22 ","pages":"Article 100261"},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000285/pdfft?md5=2ac19e65881cbed5e3ce5ac098f5fda0&pid=1-s2.0-S2590162124000285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}