{"title":"An overview on the effect of dissolved water on the viscosity of soda lime silicate melts","authors":"J. Deubener , H. Behrens , R. Müller","doi":"10.1016/j.nocx.2023.100195","DOIUrl":"10.1016/j.nocx.2023.100195","url":null,"abstract":"<div><p>In this review article, the impact of dissolved water on the viscous properties of soda lime silicate melts is addressed against the background of the upcoming switch from natural gas to hydrogen combustion. This change will lead to an increase in the total water content of the glasses by up to 0.4 mol%. In order to better define possible influences of water speciation, water-rich glasses were synthesised under increasing pressure up to the kbar range. It is shown that a distinction must be made between the influence of dissolved OH-groups and H<sub>2</sub>O-molecules in order to accurately reflect the dependence of isokom temperatures on water content. In addition, an increase of one order of magnitude in the tolerance to higher deformation rates was observed for the range of expected increased water contents during isothermal deformation processes, which is based on the time-temperature superposition principle, i.e. congruent flow curves were determined under isokomal conditions.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"19 ","pages":"Article 100195"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48614096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinod Kumar, Rituraj Sharma, Abhishek Bhatt, I. Csarnovics, P. Němec, H. Jain, K. V. Adarsh
{"title":"Ultrafast third-order nonlinear optical response of charge coupled gold nanoparticle-Ge24Se76 heterostructure","authors":"Vinod Kumar, Rituraj Sharma, Abhishek Bhatt, I. Csarnovics, P. Němec, H. Jain, K. V. Adarsh","doi":"10.1016/j.nocx.2023.100196","DOIUrl":"https://doi.org/10.1016/j.nocx.2023.100196","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"55439525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of adsorbed water on mechanical and mechanochemical properties of silicate glasses","authors":"Hongtu He, Jiaxin Yu","doi":"10.1016/j.nocx.2023.100189","DOIUrl":"10.1016/j.nocx.2023.100189","url":null,"abstract":"<div><p>During the manufacturing and in-service process, the water molecules from the humid or liquid environments are ubiquitous on glass surface, which can alter the various surface properties such as adhesion, stress corrosion, indentation, scratch, and wear behaviors when the stress is applied. In this brief review, the experimental techniques on measuring the adsorbed water molecules on glass surface are discussed and the effects of adsorbed water on mechanical and mechanochemical properties of silicate glass are discussed. In particular, recent advances on the effect of adsorbed water on the adhesion, indentation, scratch, and mechanochemical wear behaviors of silicate glass are discussed. Overall, the understanding on effect of adsorbed water on mechanical and mechanochemical properties of glasses are outlined in this review article, and thereby, some open questions are proposed to design next generation of tough functional glasses with improved both mechanical and mechanochemical properties.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100189"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44767183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to “Prediction of elemental glass-transition temperatures of metals from thermophysical properties of liquids” [Journal of Non Crystalline Solids:X 2C (2019) 100016]","authors":"A.K. Gangopadhyay, K.F. Kelton","doi":"10.1016/j.nocx.2023.100151","DOIUrl":"10.1016/j.nocx.2023.100151","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100151"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44771855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to “Indentation deformation and cracking in oxide glass –toward understanding of crack nucleation” [Journal of Non Crystalline Solids:X 1C (2019) 100009]","authors":"Satoshi Yoshida","doi":"10.1016/j.nocx.2022.100145","DOIUrl":"10.1016/j.nocx.2022.100145","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44774208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phase separation in the H2O-SiO2 system","authors":"Vincent J. McGahay","doi":"10.1016/j.nocx.2023.100162","DOIUrl":"https://doi.org/10.1016/j.nocx.2023.100162","url":null,"abstract":"<div><p>Phase separation in the H<sub>2</sub>O-SiO<sub>2</sub> system is examined in view of immiscibility in the alkali and alkaline earth silicates, critical parameters of which correlate with the charge and size of network modifier cations. Although the miscibility gaps of the H<sub>2</sub>O-SiO<sub>2</sub> system have not been completely characterized, available data indicate a phase separation tendency greater than that of Li<sub>2</sub>O-SiO<sub>2</sub>, consistent with H<sup>+</sup> being smaller than Li<sup>+</sup>. Extension of critical parameter correlations to H<sub>2</sub>O-SiO<sub>2</sub> leads, however, to unrealistic predictions of critical composition due to neglect of cation/anion size asymmetry. To capture this effect, a new coulombic cell model is developed and combined with an asymmetric hard-sphere mixture model. The resulting equation of state predicts H<sub>2</sub>O-SiO<sub>2</sub> critical parameters consistent with expected critical temperature and observed critical concentration. Suppression of the miscibility gap with pressure is explained as a consequence of silanol condensing into molecular H<sub>2</sub>O and increasing the background dielectric constant.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100162"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50186001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-resolution XPS for determining the chemical order in chalcogenide network glasses","authors":"R. Golovchak , O. Shpotyuk , A. Kovalskiy","doi":"10.1016/j.nocx.2023.100188","DOIUrl":"10.1016/j.nocx.2023.100188","url":null,"abstract":"<div><p>The power of X-ray photoelectron spectroscopy (XPS) measurements and analysis is demonstrated to establish the structure of network glasses using the examples of binary As-Se, As-S, Ge-Se and Ge-S series. Short-range chemical order in these materials is established, and main building blocks of their structurally-disordered glass network are identified throughout respective glass-forming compositional domains. The XPS fitting procedure is correlated with disproportionality analysis based on the conditions of chemically-ordered bond network model and uniform distribution of constituent chemical elements. The structure of binary As-based glasses (As-Se and As-S) is shown to be adequately described by the terms of ‘chain-crossing’ model, while ‘outrigger raft’ model has to be additionally used to build a network of Ge-based glasses (Ge-Se and Ge-S).</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100188"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43846150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-temperature phase transitions and reorientational dynamics studied by 11B NMR in glassy crystal ortho-carborane","authors":"Joachim Beerwerth, Roland Böhmer","doi":"10.1016/j.nocx.2023.100180","DOIUrl":"10.1016/j.nocx.2023.100180","url":null,"abstract":"<div><p>Ortho-carborane condenses into a plastically crystalline state in which the icosahedrally shaped molecules perform various kinds of motion. Using <sup>11</sup>B nuclear magnetic resonance (NMR), the molecular motions and the phase transitions occurring in solid ortho-carborane are revisited. The motional narrowing of the <sup>11</sup>B spectra and the spin-relaxation times are monitored over wider temperature ranges than accessed previously. The spin-relaxation times are successfully described using an approach that takes second-order quadrupolar effects and a distribution of correlation times explicitly into account. Our work resolves a discrepancy previously noted for ortho-carborane when comparing activation energies from dielectric spectroscopy with those from NMR studies. In the temperature range between about 160 and 210 K a fast contribution to the longitudinal spin-lattice relaxation is observed which we interpret as a reporter of phase transitions occurring in ortho-carborane. Quantum chemical calculations are performed, not the least to assess possible effects of cross-correlated relaxation phenomena and to check whether or not the <sup>11</sup>B quadrupolar coupling constants display significant intermolecular contributions.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100180"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48611715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"What can one infer about chemical bonding in glasses from their medium-range structural order?","authors":"S.R. Elliott","doi":"10.1016/j.nocx.2023.100192","DOIUrl":"10.1016/j.nocx.2023.100192","url":null,"abstract":"<div><p>Understanding the atomic structure of amorphous solids or glasses is a perennial, and ultimately insoluble, challenge, since the randomness involved means that structural information can only ever be obtained, from either experiment or structural modelling, in a statistical form, unlike the case for crystalline materials. The particular atomic structure, in a glass or crystal, is dictated by the underlying chemical bonding between the atoms. The question arises therefore, conversely, to what extent can one infer anything about the nature of the bonding in amorphous/glassy solids from some knowledge of the atomic structure? In this focused perspective article, I discuss the case of telluride glassy materials, and show that they represent a special case of bonding in chalcogenide materials. The near-linear axial structural configurations characteristic of certain telluride crystals, also prevalent in the corresponding glasses, and giving rise to a particular degree of linear medium-range structural order, are shown to arise from hyperbonding (e.g. three-centre/four-electron) interactions, rather than being associated with conventional (two-centre/two-electron) covalent bonds, as in other chalcogenide materials. These structural configurations are responsible for the unique ‘phase-change memory’ behaviour exhibited by some telluride materials. An experimental technique is proposed which should be capable of detecting such linear-character, medium-range structural order in telluride glasses.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100192"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41492020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D.I. Snorrason , S.M. Adalsteinsson , T.K. Tryggvason , D. Dagbjartsson , A.S. Ingason , F. Magnus
{"title":"Structural stability and oxidation resistance of amorphous TaSi-based ternary alloy coatings","authors":"D.I. Snorrason , S.M. Adalsteinsson , T.K. Tryggvason , D. Dagbjartsson , A.S. Ingason , F. Magnus","doi":"10.1016/j.nocx.2023.100183","DOIUrl":"10.1016/j.nocx.2023.100183","url":null,"abstract":"<div><p>Amorphous metal coatings have great potential for corrosion protection but finding alloy compositions which form a stable amorphous structure can be an overwhelming task. We use combinatorial magnetron sputtering and X-ray analysis to map out the phase space of TaSiM (M = Al, Cr, Fe, Ti) alloys in order to identify amorphous compositions. Atomic percentages of above 10–15 at.% of each constituent yield amorphous coatings in all four systems. TaSiAl coatings are stable when annealed in air up to and including 550 °C whereas TaSiFe, TaSiCr and TaSiTi remain amorphous up to and including 750 °C. In particular, Ta<sub>35</sub>Si<sub>15</sub>Cr<sub>50</sub> is almost unchanged at that temperature, and has a stable surface oxide shell less than 20 nm in thickness at 650 °C. The stability of these materials at high temperatures means that they could be suitable as anti-corrosion coatings in high temperature applications.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100183"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44290629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}