Phase separation in the H2O-SiO2 system

Q1 Physics and Astronomy
Vincent J. McGahay
{"title":"Phase separation in the H2O-SiO2 system","authors":"Vincent J. McGahay","doi":"10.1016/j.nocx.2023.100162","DOIUrl":null,"url":null,"abstract":"<div><p>Phase separation in the H<sub>2</sub>O-SiO<sub>2</sub> system is examined in view of immiscibility in the alkali and alkaline earth silicates, critical parameters of which correlate with the charge and size of network modifier cations. Although the miscibility gaps of the H<sub>2</sub>O-SiO<sub>2</sub> system have not been completely characterized, available data indicate a phase separation tendency greater than that of Li<sub>2</sub>O-SiO<sub>2</sub>, consistent with H<sup>+</sup> being smaller than Li<sup>+</sup>. Extension of critical parameter correlations to H<sub>2</sub>O-SiO<sub>2</sub> leads, however, to unrealistic predictions of critical composition due to neglect of cation/anion size asymmetry. To capture this effect, a new coulombic cell model is developed and combined with an asymmetric hard-sphere mixture model. The resulting equation of state predicts H<sub>2</sub>O-SiO<sub>2</sub> critical parameters consistent with expected critical temperature and observed critical concentration. Suppression of the miscibility gap with pressure is explained as a consequence of silanol condensing into molecular H<sub>2</sub>O and increasing the background dielectric constant.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100162"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Crystalline Solids: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590159123000146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Phase separation in the H2O-SiO2 system is examined in view of immiscibility in the alkali and alkaline earth silicates, critical parameters of which correlate with the charge and size of network modifier cations. Although the miscibility gaps of the H2O-SiO2 system have not been completely characterized, available data indicate a phase separation tendency greater than that of Li2O-SiO2, consistent with H+ being smaller than Li+. Extension of critical parameter correlations to H2O-SiO2 leads, however, to unrealistic predictions of critical composition due to neglect of cation/anion size asymmetry. To capture this effect, a new coulombic cell model is developed and combined with an asymmetric hard-sphere mixture model. The resulting equation of state predicts H2O-SiO2 critical parameters consistent with expected critical temperature and observed critical concentration. Suppression of the miscibility gap with pressure is explained as a consequence of silanol condensing into molecular H2O and increasing the background dielectric constant.

H2O-SiO2系统中的相分离
从碱和碱土硅酸盐中的不混溶性的角度考察了H2O-SiO2体系中的相分离,其关键参数与网络改性剂阳离子的电荷和大小相关。尽管H2O-SiO2体系的混溶性间隙尚未完全表征,但可用数据表明相分离趋势大于Li2O-SiO2,与H+小于Li+一致。然而,由于忽略了阳离子/阴离子尺寸不对称性,将临界参数相关性扩展到H2O-SiO2导致对临界组成的预测不切实际。为了捕捉这种效应,开发了一种新的库仑电池模型,并将其与非对称硬球混合物模型相结合。所得的状态方程预测了与预期临界温度和观测到的临界浓度一致的H2O-SiO2临界参数。将混溶性间隙随压力的抑制解释为硅烷醇冷凝成分子H2O并增加背景介电常数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Non-Crystalline Solids: X
Journal of Non-Crystalline Solids: X Materials Science-Materials Chemistry
CiteScore
3.20
自引率
0.00%
发文量
50
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信