{"title":"Correlation between energy and displacement demands for infilled reinforced concrete frames","authors":"G. Angelucci, F. Mollaioli, G. Quaranta","doi":"10.3389/fbuil.2023.1198478","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1198478","url":null,"abstract":"Introduction: It is well recognized that masonry infills, even though they are non-structural elements, might offer a significant earthquake resistance and can prevent the collapse of relatively weak reinforced concrete structures.Methods: The goal of this study is to investigate the energy dissipation contribution of masonry infills in reinforced concrete frames subjected to earthquake ground motion. To this purpose, a sticktype model with and without infills is considered for the evaluation of the inelastic response of representative frame structures. The infills are modeled by means of equivalent strut elements, which can only carry compressive loads. To investigate the influence of their mechanical characteristics, different idealized type of masonry infills are considered, and the weakest one is selected for the dynamic analyses based on the whole strong motions database.Results: Wide ranges of structural systems and natural periods are taken into account, in such a way to establish response spectra for several significant parameters, including those based on energy. The results of the present investigation demonstrate that the infills significantly contribute to the energy dissipation capacity, provided that they are present in all stories.Discussion: It is found that the contribution of masonry infills is of great importance in reducing both dissipation and displacement energy demands in frame elements. The effectiveness of their contribution depends on the characteristics of the ground motion, especially for non-seismic frames.","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46527779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Sestras, S. Roșca, Ștefan Bilașco, T. Șoimoșan, S. Nedevschi
{"title":"The use of budget UAV systems and GIS spatial analysis in cadastral and construction surveying for building planning","authors":"P. Sestras, S. Roșca, Ștefan Bilașco, T. Șoimoșan, S. Nedevschi","doi":"10.3389/fbuil.2023.1206947","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1206947","url":null,"abstract":"The uncertainty that comes with planning, constructing, and maintaining buildings is a constant issue for architects and civil engineers. As topography is the framework that unites architecture and landscape, the design and planning projects heavily rely on a range of monitoring, surveying methods and comprehensive field data. Along with the traditional topo-geodetic instrumentation used in land and construction surveying, unmanned aerial vehicles equipped with digital cameras and structure from motion software have been increasingly used recently in a variety of fields to create high-resolution digital elevation models. Despite this widespread use, in the majority of surveying projects it is considered that the topographic representations produced through this technology is inferior to that obtained with surveys conducted using conventional methods, along with other constraints imposed by legislation, environment and weather conditions. While certain limitations of unmanned aerial vehicle (UAV) systems are challenging, their advantage for gathering data from a different perspective and the generated outputs have the potential to significantly advance the construction industry. The present article provides an overview of the usefulness of budget UAV systems in developing a methodology that accompanies the conventional survey process for civil engineering applications. Thus, along with the established survey for cadastral and technical documentations necessary for the architectural process, a complementary UAV survey was developed, with subsequent spatial analysis in a geographic information system (GIS), in order to expand the array of deliverables. These include useful orthophoto map, larger-scale and denser representations of the topography, digital surface and terrain models, slope, aspect and solar radiation maps which will offer helpful information and instructions at the start of the construction planning process. The methodology contains two case studies with different degrees of terrain and vegetation challenges, and also presents an accuracy assessment and overall benefits discussion regarding the UAV implementation.","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43590056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decision-making approaches for optimal seismic/energy integrated retrofitting of existing buildings","authors":"M. Caruso, R. Couto, R. Pinho, R. Monteiro","doi":"10.3389/fbuil.2023.1176515","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1176515","url":null,"abstract":"Given the ambitious targets of carbon emission reduction set for the very near future, it is now expected that retrofitting operations on existing buildings aim both at reducing their operational energy consumption and at improving their seismic performance. Indeed, it is now well acknowledged that, if a sole energy efficiency upgrade is provided to a given building, in case of an earthquake occurrence, double economic and environmental losses will be experienced due to both the lost investment for energy retrofitting and the repair and retrofitting activities for post-earthquake damage. Moreover, social losses may also be experienced in terms of casualties, injured or homeless due to the seismic and structural deficiencies of the existing structure. To aid thus the process of a coupled seismic/energy renovation of the existing building stock, several multi-criteria decision-making (MCDM) approaches have been developed for the identification of optimal retrofitting solutions for buildings. Such procedures typically consider a range of economic, social, technical, and, more recently, environmental aspects that are assumed to be of interest to decision makers (e.g., installation cost, duration of works, architectural impact, need for specialised workers, etc.). The present study demonstrates the application to a case-study school building of two different MCDM approaches, which account for seismic vulnerability and energy efficiency, as well as related environmental impacts of buildings. The main differences between the two procedures are explored in terms of considered decision-making parameters and corresponding weights, rankings of retrofitting options and identification of the optimal retrofitting strategies.","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48733033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Technology transfer from the Natural Hazards Engineering Research Infrastructure (NHERI)","authors":"C. Blain, Julio A. Ramirez","doi":"10.3389/fbuil.2023.1269036","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1269036","url":null,"abstract":"","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49321546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical analysis of the power generation of pumping cycle kite power systems compared to traditional wind turbines in Aberdeen","authors":"Zhuolin Ye, I. Chaer, R. Hartungi, M.J. Ross","doi":"10.3389/fbuil.2023.1091068","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1091068","url":null,"abstract":"The United Kingdom (UK) has pledged to reduce its greenhouse-gas emissions to net zero by 2050. However, in July 2022, the High Court ruled that the government’s net zero strategy failed to outline policies that would enable it to meet the target. As a result, the government published a new plan that sets out opportunities for innovative technologies like Floating Offshore Wind Manufacturing, and hydrogen, which will not only help us reach net zero. For wind, the government’s goal is to develop up to 50 GW of offshore wind by 2030. The challenge of such an expansion is huge. It means the United Kingdom will need to install an estimated 3,200 new, and much larger, wind turbines by 2030—roughly three new turbines every 2 days. Airborne Wind Energy (AWE) systems are part of a new class of wind energy converters that is receiving considerable attention in the renewable energy generation arena. AWE systems benefit from the steadier and stronger wind streams at high altitudes to generate more energy from wind while avoiding the expense of tower construction. This paper presents a feasibility study of using AWE systems in the UK and particularly in the City of Aberdeen to generate renewable energy. The characteristics of wind energy distributions were theoretically investigated by developing a wind speed distribution model, and then the annual power production of a kite system and a turbine system with 30 kW generator were analysed by applying the annual wind profile in Aberdeen to the performance models of these two systems. It was found that the annual power production of the kite system was two times higher than that of a normal turbine system.","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48827801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Ventilation and health: how much do we need and how do we achieve this?","authors":"Yuexia Sun","doi":"10.3389/fbuil.2023.1239394","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1239394","url":null,"abstract":"","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42281560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Klir, S. Babilon, Paul Myland, Simon Benkner, T. Khanh
{"title":"Sky-like interior light settings: a preference study","authors":"S. Klir, S. Babilon, Paul Myland, Simon Benkner, T. Khanh","doi":"10.3389/fbuil.2023.1101534","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1101534","url":null,"abstract":"This paper explores human observer preferences for various sky-like interior lighting scenarios realized by a combination of a blue-enriched indirect uplight component with a correlated color temperature (CCT) of 6,500 K up to 30,000 K and a 4,000 K or 5,500 K direct downlight component. Variations in the natural sky were mimicked by the indirect uplight component reflected from the ceiling of the experimental room. The settings for the direct lighting component, on the other hand, were selected based on the reported outcomes of previous preference studies in the field of interior lighting. The resulting lighting conditions were evaluated by a total of 29 observers, from which subjective ratings of brightness, sky-likeness, satisfaction, pleasantness, and general appeal were collected in an office workplace environment. In this experimental setting, the most preferred lighting conditions exhibited a direct-to-indirect lighting ratio of 50:50 with a CCT of 4,000 K in the direct component and 6,500, 7,500, and 9,000 K in the indirect component. For all examined combinations, none was rated as truly sky-like. Nonetheless, the study results showed that only the combination of a warmer CCT in the direct component and a cooler, blue-enriched CCT in the indirect lighting component leads to a maximum in the subjects’ preference ratings. In summary, the subjects preferred light settings with a white appearance on the work surface without any intense or noticeable blue cast or tint.","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45799061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Classification prediction model of indoor PM2.5 concentration using CatBoost algorithm","authors":"Zhenwei Guo, Xinyu Wang, Liang Ge","doi":"10.3389/fbuil.2023.1207193","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1207193","url":null,"abstract":"It is increasingly important to create a healthier indoor environment for office buildings. Accurate and reliable prediction of PM2.5 concentration can effectively alleviate the delay problem of indoor air quality control system. The rapid development of machine learning has provided a research basis for the indoor air quality system to control the PM2.5 concentration. One approach is to introduce the CatBoost algorithm based on rank lifting training into the classification and prediction of indoor PM2.5 concentration. Using actual monitoring data from office building, we consider previous indoor PM2.5 concentration, indoor temperature, relative humidity, CO2 concentration, and illumination as input variables, with the output indicating whether indoor PM2.5 concentration exceeds 25 μg/m3. Based on the CatBoost algorithm, we construct an intelligent classification prediction model for indoor PM2.5 concentration. The model is evaluated using actual data and compared with the multilayer perceptron (MLP), gradientboosting decision tree (GBDT), logistic regression (LR), decision tree (DT), and k-nearest neighbors (KNN) models. The CatBoost algorithm demonstrates outstanding predictive performance, achieving an impressive area under the ROC curve (AUC) of 0.949 after hyperparameters optimition. Furthermore, when considering the five input variables, the feature importance is ranked as follows: previous indoor PM2.5 concentration, relative humidity, CO2, indoor temperature, and illuminance. Through verification, the prediction model based on CatBoost algorithm can accurately predict the indoor PM2.5 concentration level. The model can be used to predict whether the indoor concentration of PM2.5 exceeds the standard in advance and guide the air quality control system to regulate.","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49180214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Kaewunruen, Yunlong Guo, G. Jing, Akira Matsumoto
{"title":"Circular economy implementation in railway systems beyond net zero","authors":"S. Kaewunruen, Yunlong Guo, G. Jing, Akira Matsumoto","doi":"10.3389/fbuil.2023.1239740","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1239740","url":null,"abstract":"","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43849297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of graphical user interfaces of OpenSees software framework","authors":"A. Shabani","doi":"10.3389/fbuil.2023.1233116","DOIUrl":"https://doi.org/10.3389/fbuil.2023.1233116","url":null,"abstract":"Seismic vulnerability assessment is crucial for evaluating the resilience of structures. OpenSees, an open-access and versatile tool, plays a pivotal role in accurately simulating the complex behavior of structures subjected to seismic loads. However, lacking a built-in graphical user interface (GUI) is one of the limitations of OpenSees that can hinder usability and accessibility. Moreover, users must rely on command-line inputs and scripts for interaction, potentially limiting its adoption by non-programmers. To address this, several GUIs were designed as pre- and post-processor for OpenSees. In this study, 15 GUIs were categorized as open access or commercial. The functionalities and features of the GUIs, such as open-source nature, three-dimensional (3D) modeling and visualization capabilities, automation of incremental dynamic analysis (IDA), and simplification of soil-structure interaction (SSI) modeling, were examined. Note that certain GUIs were introduced with a focus on modeling and analysis of specific structures that were reviewed in this study. This mini-review aims to guide OpenSees users in choosing an appropriate GUI for their projects and support developers in improving existing GUI functionality or creating advanced GUIs that comprehensively cater to users’ needs.","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44283053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}