{"title":"A strain integrated gas infusion process (SIGI) for magnesium alloy castings","authors":"V. Tiwari , S.K. Panigrahi","doi":"10.1016/j.jmatprotec.2024.118658","DOIUrl":"10.1016/j.jmatprotec.2024.118658","url":null,"abstract":"<div><div>This study presents a Strain Integrated Gas Infusion Process (SIGI) to manufacture high-performance cast AZ91 magnesium alloys without the addition of secondary alloying elements/reinforcements or secondary processing. The current SIGI process involves a combination of agitation and localized rapid heat extraction via strain integration and high-energy gas infiltration. The SIGI casting process has been compared systematically with conventional techniques. The critical process parameters, including hole diameter, bubble diameter, and flow rate, have been optimized through numerical calculations, simulations, extensive experiments, and comprehensive analysis. The study also focused on investigating the effect of gas bubbles on the molten metal and established the mechanisms involved in improved solidification. Gas infusion combined with strain integration impacts the solidification process, ensuring uniform alloying element distribution and reducing segregation and microporosity. This manufacturing strategy eliminates casting defects such as segregation and microporosity, resulting in a non-dendritic homogeneous microstructure. The significant refinement in morphologies of both primary (α-Mg dendrites) and secondary (β-Mg<sub>17</sub>Al<sub>12</sub> phase) phases highlights the success of the current SIGI process. Compared to the conventional casting processes, a remarkable improvement in strength-ductility synergy is achieved in the current SIGI process. The scientific know-how and efficiency of the current SIGI process are established and discussed in detail, providing a promising solution to address the existing challenges encountered in magnesium alloy billet castings. The SIGI process improves the mechanical properties and corrosion resistance of billet-cast magnesium alloys. The SIGI process is suitable for the billet casting, offering significantly improved properties but faces limitations in complex mold casting applications. The billets casted by SIGI process can be used as a high-quality precursors for downstream processes to create industrial components.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"335 ","pages":"Article 118658"},"PeriodicalIF":6.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongdong Yan , Yong Li , Wenbin Zhou , Zhen Qian , Liangbing Wang
{"title":"A one-step integrated forming and curing process for smart thin-walled fiber metal laminate structures with self-sensing functions","authors":"Dongdong Yan , Yong Li , Wenbin Zhou , Zhen Qian , Liangbing Wang","doi":"10.1016/j.jmatprotec.2024.118648","DOIUrl":"10.1016/j.jmatprotec.2024.118648","url":null,"abstract":"<div><div>This study proposes and analyzes a novel one-step integrated forming and curing (IFC) process for thin-walled fiber metal laminates (FMLs) structures embedded with fiber Bragg grating (FBG) sensors, and have achieved both high-performance properties and self-sensing functions in the formed structures. A prototype machine and testing setup have been developed to validate the process's feasibility by manufacturing high-performance FMLs flat and curvature parts with effective self-sensing capabilities for real-time manufacturing and in-service monitoring. Numerical models considering curing-induced deformation and heat transfer during manufacturing have also been developed to support the analysis and validation of the self-monitoring capabilities of the intelligent FMLs parts. The results reveal that with proper control of pressure (e.g., 0.6 MPa) and time during forming and curing, high tensile and impact performance of FMLs can be maintained with embedded FBG, with less than a 3 % loss. Additionally, the IFC process can effectively lead to an apparent reduction of springback deformation in the formed FMLs (more than 80 %). The validation of the self-sensing function during the manufacturing process has been achieved by comparing the strain monitoring results with finite element (FE) simulation results during curing, with a minimum discrepancy of 2.0 %. For the in-service self-sensing function, comparison between FE analysis and surface-fixed strain gauges during the compression instability test confirmed the efficacy of FBG sensors, with a minimum discrepancy of 4.3 %. The results show that the proposed novel IFC process enables the successful manufacture of smart thin-walled FMLs parts with high shape accuracy and mechanical properties in a single step and holds significant promise for manufacturing self-sensing smart structures in the aerospace and aviation industries.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"335 ","pages":"Article 118648"},"PeriodicalIF":6.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The microstructure evolution and embrittlement mechanism in the heat-affected zone of thick-plate titanium alloys fabricated by gas metal arc welding","authors":"Zhendan Zheng , Hao Wu , Shuaifeng Zhang , Zhiqian Liao , Shaojie Wu , Fangjie Cheng","doi":"10.1016/j.jmatprotec.2024.118657","DOIUrl":"10.1016/j.jmatprotec.2024.118657","url":null,"abstract":"<div><div>The efficient gas metal arc welding (GMAW) of thick-plate titanium alloys contributes to the application and promotion of large titanium alloy structural parts. However, the severe embrittlement behavior in the heat-affected zone (HAZ) seriously harms the service performance. In the current work, the microstructure evolution and tensile properties in HAZ are systematically analyzed by employing the thermal-mechanical simulation tests, and the embrittlement mechanism is innovatively elucidated for the first time by discussing the resistance and impetus to dislocation slip. The results showed that as it got closer to weld metal, the α phase underwent the transformation of “α<sub>p</sub> + α<sub>s</sub>→α<sub>p</sub>+α’→ghost α+α’→α’ + α<sub>GB</sub>”. Furthermore, the resistance to dislocation slip increased gradually due to the more severe lattice distortion, the higher density of high-angle grain boundaries (HAGBs), and the more intensive strain concentration, while the impetus decreased gradually due to the reduced Schmid factor (SF) of {0001}<11<span><math><mover><mrow><mn>2</mn></mrow><mo>̅</mo></mover></math></span>0> slip system. These led to the most severe embrittlement behavior occurring at the near-weld metal. The current work provides a valuable theoretical guide for welding quality optimization of large titanium alloy structural parts.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"335 ","pages":"Article 118657"},"PeriodicalIF":6.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenkun Zhang, Daxiang Deng, Xin Gu, Long Zeng, Yingxue Yao
{"title":"Highly efficient fabrication of reentrant microchannels with micro serrated pin fins using a micro staggered multi-edge ball-end milling tool in a single process","authors":"Zhenkun Zhang, Daxiang Deng, Xin Gu, Long Zeng, Yingxue Yao","doi":"10.1016/j.jmatprotec.2024.118650","DOIUrl":"10.1016/j.jmatprotec.2024.118650","url":null,"abstract":"<div><div>Microchannels with micro pin fins and reentrant cavities can increase the heat dissipation area and enhance heat transfer, which are promising for high-performance microchannel heat sinks for heat dissipation of high-heat-flux devices. Nevertheless, their fabrication is time-consuming and cost-inefficient for conventional methods. To this aim, we in this study developed a novel micro staggered multi-edge ball end milling tool (SMBMT) to fabricate a unique type of reentrant microchannels with micro serrated pin fins (RMSPF) in a single process. The formation feasibility of the RMSPF was demonstrated, and they were of narrow exit slots with a width of 500 μm on the top, reentrant circular cavities with a diameter of 800 μm at the bottom, and micro serrated pin fins with a width of about 52 μm and a height of 35 μm on the wall surface of reentrant cavities. More microscale serrated pin fins with much smaller sizes than the micro cutting edges of the SMBMT were obtained due to the staggered arrangement and overlapping effect of the multiple micro cutting edges. A geometrical model of the SMBMT with discrete multiple cutting edges was developed by considering the structure of the RMSPF. The formation process mechanism of RMSPF and its chip formation process was investigated with both experiments and finite element (FE) simulations. Compared to conventional micro ball end milling tool (CBM) with continuous cutting edges, the SMBMT suppressed the burr formation inside reentrant microchannels and improved the surface quality, and reduced the cutting force by up to 53 %. The enhanced cutting performance of SMBMT can be attributed to that the multiple discrete cutting edges of SMBMT effectively decreased the contact area of tool-workpiece and the friction between cutting tool and chips. This study offered a highly efficient method to fabricate microchannels with surface microstructures in a single micromilling process, which provided valuable insights for the development of high-performance microchannel heat sinks in a wide range of application areas.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"335 ","pages":"Article 118650"},"PeriodicalIF":6.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feijie Cui , Hang Zhang , Minghui Yang , Ben Deng , Xiaowei Tang , Fangyu Peng , Rong Yan , Zhiqian Pan
{"title":"Multiscale simulation and experimental study on ultrasonic vibration assisted machining of SiCp/Al composites considering acoustic softening","authors":"Feijie Cui , Hang Zhang , Minghui Yang , Ben Deng , Xiaowei Tang , Fangyu Peng , Rong Yan , Zhiqian Pan","doi":"10.1016/j.jmatprotec.2024.118649","DOIUrl":"10.1016/j.jmatprotec.2024.118649","url":null,"abstract":"<div><div>Ultrasonic vibration assisted machining (UVAM) is an attractive option to achieve high-quality and low-wear machining of the advanced composites. The scope of this paper is to evaluate the role of ultrasonic vibration on the microstructure and material removal mechanism for SiCp/Al composites. Firstly, an ultrasonic vibration assisted tension (UVAT) molecular dynamics (MD) simulation method for SiCp/Al composites is proposed. The simulation results verify the existence of acoustic softening effect for SiCp/Al composites under ultrasonic vibration loads. Furthermore, it is found that the acoustic softening originates from the dynamic evolution of the dislocations in the Al matrix. However, the acoustic softening is hardly mentioned in conventional finite element (FE) simulations depicting the microscopic removal mechanism of materials. In this paper, the constitutive correction method is adopted to realize it. The stress reduction of the Al matrix caused by acoustic softening is reverse-identified, and the maximum is 102 MPa. Finally, a novel FE model for UVAM of SiCp/Al composites considering acoustic softening is constructed, and the microscopic removal mechanism of SiCp/Al composites is revealed by the FE simulation and microscopic experimental results. On the one hand, the ultrasonic vibration enhances the stress relaxation of the Al matrix by reducing the dislocation density, and further enhances the deformation ability of SiCp/Al composites. On the other hand, the matrix tearing dominates the generation and propagation of shear band cracks in conventional machining (CM), while the dominant factor in UVAM is the finely broken SiC particles inside the shear band. This study enhances the understanding of the microscopic removal mechanism in UVAM for SiCp/Al composites.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"335 ","pages":"Article 118649"},"PeriodicalIF":6.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanli Yang , Hongwei Jiang , Pengwen Zhou , Bin Shao , Yingying Zong
{"title":"Continuous and discontinuous dynamic recrystallization in the superplastic deformation of moderately cold-deformed Cr4Mo4Ni4V martensitic steel","authors":"Wanli Yang , Hongwei Jiang , Pengwen Zhou , Bin Shao , Yingying Zong","doi":"10.1016/j.jmatprotec.2024.118647","DOIUrl":"10.1016/j.jmatprotec.2024.118647","url":null,"abstract":"<div><div>This study employs lath martensite as the starting structure to achieve superplasticity through limited cold deformation, revealing how the dynamic recrystallization mechanism during superplastic deformation changes with the amount of prior cold deformation. Results show that an elongation close to 700 % can be achieved with 25 % cold deformation, and the peak stress is significantly reduced. The amount of deformation required to achieve superplasticity with martensite as the initial processing structure is much lower than with ferrite as the initial processing structure. However, when the deformation increased from 25 % to 50 %, the elongation increased only slightly, from 696 % to 756 %, while the peak stress increased from 90.1 MPa to 96.4 MPa. The reason is that continuous dynamic recrystallization (CDRX) is suppressed, and softening occurs only through discontinuous recrystallization (DDRX), thus weakening the softening effect. The superplastic deformation mechanism for samples with high cold deformation mainly involves grain boundary sliding (GBS) associated with DDRX, while for samples with moderate cold deformation, it involves GBS accompanied by both CDRX and DDRX. Strain rate jump (SRJ) tests reveal that even 5 % cold deformation can accelerate the growth of the <em>m</em>-value during deformation. Interestingly, the <em>m</em>-value of the 25 % deformed sample is slightly higher than that of the 50 % deformed sample. This research offers a promising route for achieving superplasticity in high-alloy low-carbon steel, revealing continuous and discontinuous dynamic recrystallization accompanied by grain boundary sliding in superplastic cold-deformed martensitic Cr<sub>4</sub>Mo<sub>4</sub>Ni<sub>4</sub>V steel.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"335 ","pages":"Article 118647"},"PeriodicalIF":6.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving current window in keyhole welding with double-layers hybrid arc heat source","authors":"ZuMing Liu , BoHan Jia , XuMin Guo , XingChuan Zhao","doi":"10.1016/j.jmatprotec.2024.118646","DOIUrl":"10.1016/j.jmatprotec.2024.118646","url":null,"abstract":"<div><div>Keyhole welding can be easily achieved with a plasma arc, but the process window is narrow because too high arc pressure will damage the keyhole stability. Double-layers hybrid arc heat source was developed by compositing an outer layer of free arc into the center plasma arc jet, the arc heat power can be adjusted in wide range with suppression of arc pressure changing. Keyhole stability was tested to be improved with 6mm-thick stainless steel in previous works, but the stability principle is not yet discussed. In this paper, keyhole welding tests were carried out with thicker steel plates to evaluate the usable welding current window improvement and the weld pool stabilization principle. Results show that the usable current window with the hybrid arc is nearly double wider over that with plasma arc in the 6mm-, 8mm- and 16mm-thick plates. The added free arc heat is deposited into the keyhole bottom with limited ratio, the backside weld width increases much more (about 2.4–6 folders) slowly by increasing the free arc current than by increasing the plasma arc current. Keyhole weld pool stabilization principle is outlined: if the plasma arc is given, arc pressure is almost fixed, surface tension in backside weld surface decreases slowly with the free arc current, weld pool force balance can be achieved in much wider range of welding current. Smooth front and backside weld surfaces are easily obtained with hybrid arc. The research indicates that, for application of the developed hybrid arc system in keyhole welding field, the plasma arc should get the fully penetration threshold, the free arc current is used as the process adjuster, the usable welding current range is very wide.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"334 ","pages":"Article 118646"},"PeriodicalIF":6.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoqiang Yao , Tianfeng Zhou , Xinbo Su , Gang Wang , Weijia Guo , Xuanzhe Yang , Bin Zhao , Xibin Wang
{"title":"Research on wafer-level SiC microgroove array process via integrated molding-etching process","authors":"Xiaoqiang Yao , Tianfeng Zhou , Xinbo Su , Gang Wang , Weijia Guo , Xuanzhe Yang , Bin Zhao , Xibin Wang","doi":"10.1016/j.jmatprotec.2024.118645","DOIUrl":"10.1016/j.jmatprotec.2024.118645","url":null,"abstract":"<div><div>Silicon carbide (SiC) microgroove arrays (MGAs) play a pivotal role as optical components in modern optical engineering. This paper introduces an innovative approach for the fabrication of MGAs on hard materials. This method integrates hot embossing (HE) and inductively coupled plasma (ICP), utilizing polydimethylsiloxane (PDMS) as the intermediary mold due to its excellent demolding performance and shape replication qualities. The process involves transferring the MGAs from the Ni-P master mold to the PDMS mold, followed by replication onto the photoresist surface by hot embossing. Subsequently, the MGAs on the photoresist mask is etched into the hard substrate material using ICP etching. For efficient customization of MGAs, a reliable geometrical model based on angular dependence theory is developed to assist in selecting process parameters and designing masks. The correlation between etching selectivity and characteristic dimension is elucidated. Experimental results demonstrate that the sidewall angle decreases with higher selectivity and increases with a greater sidewall angle on the patterned mask. Plasma etching reveals unaffected areas in convex corners and the forming errors in concave corners, highlighting a high angular dependence of the etch rate. Moreover, minimizing microdefects can be achieved by optimizing process parameters and reducing etch time.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"334 ","pages":"Article 118645"},"PeriodicalIF":6.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuaikang Chang , Wenchuan Liu , Jiren Tang , Yukun Lan , Haiyang Long
{"title":"Thermal effects and deformation mechanisms in abrasive waterjet machining: insights from Ti-6Al-4V alloy for broader applications","authors":"Shuaikang Chang , Wenchuan Liu , Jiren Tang , Yukun Lan , Haiyang Long","doi":"10.1016/j.jmatprotec.2024.118643","DOIUrl":"10.1016/j.jmatprotec.2024.118643","url":null,"abstract":"<div><div>As a novel cold machining method, abrasive waterjet machining (AWJM) has significant potential for processing titanium-based materials such as Ti-6Al-4V alloy. However, the thermal effects and material deformation mechanisms of AWJM remain challenging to explain. This study introduces a six-colour blackbody radiation pyrometry method that successfully monitors transient high temperatures during AWJM. The results revealed that temperatures during AWJM were not negligible, reaching up to 3602.08 K, leading to material solidification and oxidation. The flash temperature exhibited transient and continuously oscillating characteristics at the microsecond scale. The combined mechanical and thermal loads created three distinct regions: the jet impact zone (elongated grains, oxide-based compositions, and material melting), the heat-affected zone (larger grains), and the base material zone. In the jet impact zone, a pronounced temperature gradient formed on the surface, promoting grain refinement. However, as the distance from the impact zone increases, the extent of grain refinement diminishes, leading to larger grain sizes. The higher kernel average misorientation values observed in and near the impact zone indicated that high-temperature conditions were insufficient for complete recrystallisation, either because of inadequate diffusion or the short duration of the elevated temperatures. This study reveals the thermal and material deformation mechanisms involved in the AWJM process. This establishes a foundational understanding of the processing of titanium-based and other heat-sensitive materials, ultimately contributing to enhanced overall material performance.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"334 ","pages":"Article 118643"},"PeriodicalIF":6.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Wu , Litao Chang , Wenjun Liang , Xiaoli Li , Li Guo , Xingtai Zhou
{"title":"Understanding the grain refinement and residual stress formation mechanisms of a Ni-based alloy during machining processes","authors":"Tao Wu , Litao Chang , Wenjun Liang , Xiaoli Li , Li Guo , Xingtai Zhou","doi":"10.1016/j.jmatprotec.2024.118641","DOIUrl":"10.1016/j.jmatprotec.2024.118641","url":null,"abstract":"<div><div>Ni-based alloys are important materials for many industries, microstructure of the sub-surface regions of these alloys can be refined during machining processes, affecting both their machinability and service performance. Several mechanisms have been proposed to explain the machining-induced microstructure refinement of these alloys, however, sound evidences to support them are still lacking. In this research, microstructure characterization with an emphasis on the micro-texture and defects was conducted on milled surfaces of a Ni-based alloy, to promote in-depth understanding of the grain-refinement process. A nano-crystalline layer consisted a topmost region with randomly-orientated grains and annealing nano-twins and a textured region beneath it with deformed microstructure was observed in the cross-section of the alloy with the help of high resolution orientation determination techniques. These observations provide additional evidences to support the recrystallization induced grain-refinement mechanism of the nano-grains. It is also suggested that recrystallization was a by-product of the shear deformation occurred during the milling process, supported by the observation of the clear boundary between the nano-grain layer and its beneath deformed region. The deformed region was refined as a result of mechanical twining and twin-intersections, leading to significant fluctuations of the residuals stresses.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"334 ","pages":"Article 118641"},"PeriodicalIF":6.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}