Full domain power-modulated galvanometer-scanned laser welding of zirconium alloys/nickel-based superalloys dissimilar joints: microstructural evolution and strength enhancement

IF 7.5 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
Gang Zhang , Jianbo Wang , Yu Shi , Ding Fan
{"title":"Full domain power-modulated galvanometer-scanned laser welding of zirconium alloys/nickel-based superalloys dissimilar joints: microstructural evolution and strength enhancement","authors":"Gang Zhang ,&nbsp;Jianbo Wang ,&nbsp;Yu Shi ,&nbsp;Ding Fan","doi":"10.1016/j.jmatprotec.2025.118975","DOIUrl":null,"url":null,"abstract":"<div><div>Dissimilar joining of zirconium alloys to nickel-based superalloys presents critical challenges in nuclear fuel assembly applications, where interfacial brittle intermetallic compounds (IMCs) and thermal stress concentration fundamentally limit the structural integrity of Zr/Ni joints. This study developed an innovative full domain power-modulated (FDPM) galvanometer-scanned laser welding technique with multiscale thermal management to address these critical issues in Zr-N36/IN718 joints. Through a series of experiments with dynamic heat input redistribution, temperature gradient optimization, and multi-stage residual stress mitigation, a quantitative correlation between thermal process and joint strengthening mechanism is established. Results indicate that reducing heat input by 42 % effectively alleviates excessive Ni/Cr/Fe elemental diffusion, decreasing IMCs layer thickness from 39 μm to 17 μm. The thermal management strategy (300 W preheating +360 W in-situ heat treatment) results in a 23.5 % reduction in small-angle grain boundaries (55.4–31.9 %) and 30 % decrease in kernel average misorientation (KAM) indicating substantial residual stress release. The joint tensile strength is enhanced from 23.73 MPa to 103 MPa, with the fracture mode transitioning from intergranular brittle to ductile dimple-dominated failure. Microstructural analysis demonstrates a γ-(Ni, Cr, Fe) matrix reinforced by nano-Ni₃Nb precipitates in the fusion zone, while gradient-distributed NiZr₂ and σ-FeCr phases at the reaction layer effectively mitigate thermal expansion mismatch.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"343 ","pages":"Article 118975"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625002651","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dissimilar joining of zirconium alloys to nickel-based superalloys presents critical challenges in nuclear fuel assembly applications, where interfacial brittle intermetallic compounds (IMCs) and thermal stress concentration fundamentally limit the structural integrity of Zr/Ni joints. This study developed an innovative full domain power-modulated (FDPM) galvanometer-scanned laser welding technique with multiscale thermal management to address these critical issues in Zr-N36/IN718 joints. Through a series of experiments with dynamic heat input redistribution, temperature gradient optimization, and multi-stage residual stress mitigation, a quantitative correlation between thermal process and joint strengthening mechanism is established. Results indicate that reducing heat input by 42 % effectively alleviates excessive Ni/Cr/Fe elemental diffusion, decreasing IMCs layer thickness from 39 μm to 17 μm. The thermal management strategy (300 W preheating +360 W in-situ heat treatment) results in a 23.5 % reduction in small-angle grain boundaries (55.4–31.9 %) and 30 % decrease in kernel average misorientation (KAM) indicating substantial residual stress release. The joint tensile strength is enhanced from 23.73 MPa to 103 MPa, with the fracture mode transitioning from intergranular brittle to ductile dimple-dominated failure. Microstructural analysis demonstrates a γ-(Ni, Cr, Fe) matrix reinforced by nano-Ni₃Nb precipitates in the fusion zone, while gradient-distributed NiZr₂ and σ-FeCr phases at the reaction layer effectively mitigate thermal expansion mismatch.

Abstract Image

锆合金/镍基高温合金异种接头的全域功率调制电镜扫描激光焊接:显微组织演变与强度增强
锆合金与镍基高温合金的不同连接方式在核燃料组件应用中提出了严峻的挑战,其中界面脆性金属间化合物(IMCs)和热应力集中从根本上限制了Zr/Ni接头的结构完整性。本研究开发了一种具有多尺度热管理的创新全域功率调制(FDPM)振镜扫描激光焊接技术,以解决Zr-N36/IN718接头中的这些关键问题。通过动态热输入重分配、温度梯度优化、多阶段残余应力消除等一系列实验,建立了热过程与接头强化机制的定量关联。结果表明:减少42 %的热输入可有效缓解Ni/Cr/Fe元素过度扩散,IMCs层厚度从39 μm减小到17 μm;热管理策略(300 W预热+360 W原位热处理)导致小角晶界降低23.5 %(55.4-31.9 %),籽粒平均取向偏差(KAM)降低30 %,表明残余应力大量释放。接头抗拉强度由23.73 MPa提高到103 MPa,断裂模式由晶间脆性断裂转变为延性韧窝为主断裂。显微组织分析表明,熔合区有纳米Ni₃Nb增强的γ-(Ni, Cr, Fe)基体析出,反应层梯度分布的NiZr₂和σ-FeCr相有效缓解了热膨胀失配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信