Innovations in Incidence Geometry最新文献

筛选
英文 中文
Moufang quadrangles and affine twin buildings of type C2 牟方四合院和仿射双楼C2型
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.431
Bernhard Mühlherr, Hendrik Van Maldeghem
{"title":"Moufang quadrangles and affine twin buildings of type C2","authors":"Bernhard Mühlherr, Hendrik Van Maldeghem","doi":"10.2140/iig.2023.20.431","DOIUrl":"https://doi.org/10.2140/iig.2023.20.431","url":null,"abstract":"","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"154 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic and projective properties of embeddable polar spaces 可嵌入极空间的综合和射影性质
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.519
Antonio Pasini
{"title":"Synthetic and projective properties of embeddable polar spaces","authors":"Antonio Pasini","doi":"10.2140/iig.2023.20.519","DOIUrl":"https://doi.org/10.2140/iig.2023.20.519","url":null,"abstract":"","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134990251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Restricted universal groups for right-angled buildings 直角建筑的受限通用群
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.177
Jens Bossaert, Tom De Medts
{"title":"Restricted universal groups for right-angled buildings","authors":"Jens Bossaert, Tom De Medts","doi":"10.2140/iig.2023.20.177","DOIUrl":"https://doi.org/10.2140/iig.2023.20.177","url":null,"abstract":"In 2000, Marc Burger and Shahar Mozes introduced universal groups acting on trees. Such groups provide interesting examples of totally disconnected locally compact groups. Intuitively, these are the largest groups for which all local actions satisfy a prescribed behavior. Since then, their study has evolved in various directions. In particular, Adrien Le Boudec has studied restricted universal groups, where the prescribed behavior is allowed to be violated in a finite number of vertices. On the other hand, we have been studying universal groups acting on right-angled buildings, a class of geometric objects with a much more general structure than trees. The aim of the current paper is to combine both ideas: we will study restricted universal groups acting on right-angled buildings. We show several permutational and topological properties of those groups, with as main result a precise criterion for when these groups are simple.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on commutators in compact semisimple Lie algebras 紧半单李代数中对易子的注释
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.317
Linus Kramer
{"title":"A note on commutators in compact semisimple Lie algebras","authors":"Linus Kramer","doi":"10.2140/iig.2023.20.317","DOIUrl":"https://doi.org/10.2140/iig.2023.20.317","url":null,"abstract":"Given two elements $A,B$ in a compact semisimple Lie algebra, we show that there is a regular element $X$ and elements $Y,Z$ with $A=[X,Y]$ and $B=[X,Z]$. In the course of the proof we show also that every linear subspace $V$ of codimension at most 2 in the Lie algebra contains a CSA.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On inclusions of exceptional long root geometries of type E 关于E型异常长根几何形状的夹杂物
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.247
Anneleen De Schepper, Hendrik Van Maldeghem
{"title":"On inclusions of exceptional long root geometries of type E","authors":"Anneleen De Schepper, Hendrik Van Maldeghem","doi":"10.2140/iig.2023.20.247","DOIUrl":"https://doi.org/10.2140/iig.2023.20.247","url":null,"abstract":"","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The unique coclique extension property for apartments of buildings 独特的建筑公寓的coclique扩展属性
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.209
Andries E. Brouwer, Jan Draisma, Çiçek Güven
{"title":"The unique coclique extension property for apartments of buildings","authors":"Andries E. Brouwer, Jan Draisma, Çiçek Güven","doi":"10.2140/iig.2023.20.209","DOIUrl":"https://doi.org/10.2140/iig.2023.20.209","url":null,"abstract":"We show that the Kneser graph of objects of a fixed type in a building of spherical type has the unique coclique extension property when the corresponding representation has minuscule weight and also when the diagram is simply laced and the representation is adjoint.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sur un théorème de V. V. Deodhar et de M. J. Dyer sur les groupes de Coxeter 根据V. V. Deodhar和M. J. Dyer关于考克塞特群的定理
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.295
Jean-Yves Hée
{"title":"Sur un théorème de V. V. Deodhar et de M. J. Dyer sur les groupes de Coxeter","authors":"Jean-Yves Hée","doi":"10.2140/iig.2023.20.295","DOIUrl":"https://doi.org/10.2140/iig.2023.20.295","url":null,"abstract":"","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135733986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short biography of Jacques Tits 雅克·提兹的简短传记
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.65
Franz Bingen
{"title":"Short biography of Jacques Tits","authors":"Franz Bingen","doi":"10.2140/iig.2023.20.65","DOIUrl":"https://doi.org/10.2140/iig.2023.20.65","url":null,"abstract":"","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135734521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An octonionic construction of E8 and the Lie algebra magic square E8的一个八元构造与李代数幻方
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.611
Robert A. Wilson, Tevian Dray, Corinne A. Manogue
{"title":"An octonionic construction of E8 and the Lie algebra magic square","authors":"Robert A. Wilson, Tevian Dray, Corinne A. Manogue","doi":"10.2140/iig.2023.20.611","DOIUrl":"https://doi.org/10.2140/iig.2023.20.611","url":null,"abstract":"We give a new construction of the Lie algebra of type $E_8$, in terms of $3times3$ matrices, such that the Lie bracket has a natural description as the matrix commutator. This leads to a new interpretation of the Freudenthal-Tits magic square of Lie algebras, acting on themselves by commutation.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134989788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Mixed relations for buildings of type F4 F4类建筑的混合关系
Innovations in Incidence Geometry Pub Date : 2023-09-13 DOI: 10.2140/iig.2023.20.543
Johannes Roth, Hendrik Van Maldeghem
{"title":"Mixed relations for buildings of type F4","authors":"Johannes Roth, Hendrik Van Maldeghem","doi":"10.2140/iig.2023.20.543","DOIUrl":"https://doi.org/10.2140/iig.2023.20.543","url":null,"abstract":"","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135734371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信