{"title":"独特的建筑公寓的coclique扩展属性","authors":"Andries E. Brouwer, Jan Draisma, Çiçek Güven","doi":"10.2140/iig.2023.20.209","DOIUrl":null,"url":null,"abstract":"We show that the Kneser graph of objects of a fixed type in a building of spherical type has the unique coclique extension property when the corresponding representation has minuscule weight and also when the diagram is simply laced and the representation is adjoint.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The unique coclique extension property for apartments of buildings\",\"authors\":\"Andries E. Brouwer, Jan Draisma, Çiçek Güven\",\"doi\":\"10.2140/iig.2023.20.209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Kneser graph of objects of a fixed type in a building of spherical type has the unique coclique extension property when the corresponding representation has minuscule weight and also when the diagram is simply laced and the representation is adjoint.\",\"PeriodicalId\":36589,\"journal\":{\"name\":\"Innovations in Incidence Geometry\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Incidence Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/iig.2023.20.209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/iig.2023.20.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
The unique coclique extension property for apartments of buildings
We show that the Kneser graph of objects of a fixed type in a building of spherical type has the unique coclique extension property when the corresponding representation has minuscule weight and also when the diagram is simply laced and the representation is adjoint.