{"title":"紧半单李代数中对易子的注释","authors":"Linus Kramer","doi":"10.2140/iig.2023.20.317","DOIUrl":null,"url":null,"abstract":"Given two elements $A,B$ in a compact semisimple Lie algebra, we show that there is a regular element $X$ and elements $Y,Z$ with $A=[X,Y]$ and $B=[X,Z]$. In the course of the proof we show also that every linear subspace $V$ of codimension at most 2 in the Lie algebra contains a CSA.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on commutators in compact semisimple Lie algebras\",\"authors\":\"Linus Kramer\",\"doi\":\"10.2140/iig.2023.20.317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two elements $A,B$ in a compact semisimple Lie algebra, we show that there is a regular element $X$ and elements $Y,Z$ with $A=[X,Y]$ and $B=[X,Z]$. In the course of the proof we show also that every linear subspace $V$ of codimension at most 2 in the Lie algebra contains a CSA.\",\"PeriodicalId\":36589,\"journal\":{\"name\":\"Innovations in Incidence Geometry\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Incidence Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/iig.2023.20.317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/iig.2023.20.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A note on commutators in compact semisimple Lie algebras
Given two elements $A,B$ in a compact semisimple Lie algebra, we show that there is a regular element $X$ and elements $Y,Z$ with $A=[X,Y]$ and $B=[X,Z]$. In the course of the proof we show also that every linear subspace $V$ of codimension at most 2 in the Lie algebra contains a CSA.