Georgios Trichopoulos, M. Konstantakis, G. Caridakis, A. Katifori, Myrto Koukouli
{"title":"Crafting a Museum Guide Using ChatGPT4","authors":"Georgios Trichopoulos, M. Konstantakis, G. Caridakis, A. Katifori, Myrto Koukouli","doi":"10.3390/bdcc7030148","DOIUrl":"https://doi.org/10.3390/bdcc7030148","url":null,"abstract":"This paper introduces a groundbreaking approach to enriching the museum experience using ChatGPT4, a state-of-the-art language model by OpenAI. By developing a museum guide powered by ChatGPT4, we aimed to address the challenges visitors face in navigating vast collections of artifacts and interpreting their significance. Leveraging the model’s natural-language-understanding and -generation capabilities, our guide offers personalized, informative, and engaging experiences. However, caution must be exercised as the generated information may lack scientific integrity and accuracy. To mitigate this, we propose incorporating human oversight and validation mechanisms. The subsequent sections present our own case study, detailing the design, architecture, and experimental evaluation of the museum guide system, highlighting its practical implementation and insights into the benefits and limitations of employing ChatGPT4 in the cultural heritage context.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43363068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovative Robotic Technologies and Artificial Intelligence in Pharmacy and Medicine: Paving the Way for the Future of Health Care—A Review","authors":"M. Stasevych, V. Zvarych","doi":"10.3390/bdcc7030147","DOIUrl":"https://doi.org/10.3390/bdcc7030147","url":null,"abstract":"The future of innovative robotic technologies and artificial intelligence (AI) in pharmacy and medicine is promising, with the potential to revolutionize various aspects of health care. These advances aim to increase efficiency, improve patient outcomes, and reduce costs while addressing pressing challenges such as personalized medicine and the need for more effective therapies. This review examines the major advances in robotics and AI in the pharmaceutical and medical fields, analyzing the advantages, obstacles, and potential implications for future health care. In addition, prominent organizations and research institutions leading the way in these technological advancements are highlighted, showcasing their pioneering efforts in creating and utilizing state-of-the-art robotic solutions in pharmacy and medicine. By thoroughly analyzing the current state of robotic technologies in health care and exploring the possibilities for further progress, this work aims to provide readers with a comprehensive understanding of the transformative power of robotics and AI in the evolution of the healthcare sector. Striking a balance between embracing technology and preserving the human touch, investing in R&D, and establishing regulatory frameworks within ethical guidelines will shape a future for robotics and AI systems. The future of pharmacy and medicine is in the seamless integration of robotics and AI systems to benefit patients and healthcare providers.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46567026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Speech Emotions Recognition Using Multivariate Functional Data Analysis","authors":"Matthieu Saumard","doi":"10.3390/bdcc7030146","DOIUrl":"https://doi.org/10.3390/bdcc7030146","url":null,"abstract":"Speech Emotions Recognition (SER) has gained significant attention in the fields of human–computer interaction and speech processing. In this article, we present a novel approach to improve SER performance by interpreting the Mel Frequency Cepstral Coefficients (MFCC) as a multivariate functional data object, which accelerates learning while maintaining high accuracy. To treat MFCCs as functional data, we preprocess them as images and apply resizing techniques. By representing MFCCs as functional data, we leverage the temporal dynamics of speech, capturing essential emotional cues more effectively. Consequently, this enhancement significantly contributes to the learning process of SER methods without compromising performance. Subsequently, we employ a supervised learning model, specifically a functional Support Vector Machine (SVM), directly on the MFCC represented as functional data. This enables the utilization of the full functional information, allowing for more accurate emotion recognition. The proposed approach is rigorously evaluated on two distinct databases, EMO-DB and IEMOCAP, serving as benchmarks for SER evaluation. Our method demonstrates competitive results in terms of accuracy, showcasing its effectiveness in emotion recognition. Furthermore, our approach significantly reduces the learning time, making it computationally efficient and practical for real-world applications. In conclusion, our novel approach of treating MFCCs as multivariate functional data objects exhibits superior performance in SER tasks, delivering both improved accuracy and substantial time savings during the learning process. This advancement holds great potential for enhancing human–computer interaction and enabling more sophisticated emotion-aware applications.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48425737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ekaterina Lesnyak, Tabea Belkot, Johannes Hurka, Jan Philipp Hörding, L. Kuhlmann, Pavel Paulau, Marvin Schnabel, P. Schönfeldt, Jan Middelberg
{"title":"Applied Digital Twin Concepts Contributing to Heat Transition in Building, Campus, Neighborhood, and Urban Scale","authors":"Ekaterina Lesnyak, Tabea Belkot, Johannes Hurka, Jan Philipp Hörding, L. Kuhlmann, Pavel Paulau, Marvin Schnabel, P. Schönfeldt, Jan Middelberg","doi":"10.3390/bdcc7030145","DOIUrl":"https://doi.org/10.3390/bdcc7030145","url":null,"abstract":"The heat transition is a central pillar of the energy transition, aiming to decarbonize and improve the energy efficiency of the heat supply in both the private and industrial sectors. On the one hand, this is achieved by substituting fossil fuels with renewable energy. On the other hand, it involves reducing overall heat consumption and associated transmission and ventilation losses. In addition to refurbishment, digitalization contributes significantly. Despite substantial research on Digital Twins (DTs) for heat transition at different scales, a cross-scale perspective on heat optimization still needs to be developed. In response to this research gap, the present study examines four instances of applied DTs across various scales: building, campus, neighborhood, and urban. The study compares their objectives and conceptual frameworks while also identifying common challenges and potential synergies. The study’s findings indicate that all DT scales face similar data-related challenges, such as gathering, ownership, connectivity, and reliability. Also, hierarchical synergy is identified among the DTs, implying the need for collaboration and exchange. In response to this, the “Wärmewende” data platform, whose objectives and concepts are presented in the paper, promotes research data and knowledge exchange with internal and external stakeholders.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45613028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing the Early Detection of Chronic Kidney Disease: A Robust Machine Learning Model","authors":"M. Arif, A. Mukheimer, Daniyal Asif","doi":"10.3390/bdcc7030144","DOIUrl":"https://doi.org/10.3390/bdcc7030144","url":null,"abstract":"Clinical decision-making in chronic disorder prognosis is often hampered by high variance, leading to uncertainty and negative outcomes, especially in cases such as chronic kidney disease (CKD). Machine learning (ML) techniques have emerged as valuable tools for reducing randomness and enhancing clinical decision-making. However, conventional methods for CKD detection often lack accuracy due to their reliance on limited sets of biological attributes. This research proposes a novel ML model for predicting CKD, incorporating various preprocessing steps, feature selection, a hyperparameter optimization technique, and ML algorithms. To address challenges in medical datasets, we employ iterative imputation for missing values and a novel sequential approach for data scaling, combining robust scaling, z-standardization, and min-max scaling. Feature selection is performed using the Boruta algorithm, and the model is developed using ML algorithms. The proposed model was validated on the UCI CKD dataset, achieving outstanding performance with 100% accuracy. Our approach, combining innovative preprocessing steps, the Boruta feature selection, and the k-nearest neighbors algorithm, along with a hyperparameter optimization using grid-search cross-validation (CV), demonstrates its effectiveness in enhancing the early detection of CKD. This research highlights the potential of ML techniques in improving clinical support systems and reducing the impact of uncertainty in chronic disorder prognosis.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48683149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ransomware Detection Using Machine Learning: A Survey","authors":"Amjad Alraizza, Abdulmohsen Algarni","doi":"10.3390/bdcc7030143","DOIUrl":"https://doi.org/10.3390/bdcc7030143","url":null,"abstract":"Ransomware attacks pose significant security threats to personal and corporate data and information. The owners of computer-based resources suffer from verification and privacy violations, monetary losses, and reputational damage due to successful ransomware assaults. As a result, it is critical to accurately and swiftly identify ransomware. Numerous methods have been proposed for identifying ransomware, each with its own advantages and disadvantages. The main objective of this research is to discuss current trends in and potential future debates on automated ransomware detection. This document includes an overview of ransomware, a timeline of assaults, and details on their background. It also provides comprehensive research on existing methods for identifying, avoiding, minimizing, and recovering from ransomware attacks. An analysis of studies between 2017 and 2022 is another advantage of this research. This provides readers with up-to-date knowledge of the most recent developments in ransomware detection and highlights advancements in methods for combating ransomware attacks. In conclusion, this research highlights unanswered concerns and potential research challenges in ransomware detection.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43798277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Breast Cancer Classification Using Concatenated Triple Convolutional Neural Networks Model","authors":"M. Alshayeji, Jassim Al-Buloushi","doi":"10.3390/bdcc7030142","DOIUrl":"https://doi.org/10.3390/bdcc7030142","url":null,"abstract":"Improved disease prediction accuracy and reliability are the main concerns in the development of models for the medical field. This study examined methods for increasing classification accuracy and proposed a precise and reliable framework for categorizing breast cancers using mammography scans. Concatenated Convolutional Neural Networks (CNN) were developed based on three models: Two by transfer learning and one entirely from scratch. Misclassification of lesions from mammography images can also be reduced using this approach. Bayesian optimization performs hyperparameter tuning of the layers, and data augmentation will refine the model by using more training samples. Analysis of the model’s accuracy revealed that it can accurately predict disease with 97.26% accuracy in binary cases and 99.13% accuracy in multi-classification cases. These findings are in contrast with recent studies on the same issue using the same dataset and demonstrated a 16% increase in multi-classification accuracy. In addition, an accuracy improvement of 6.4% was achieved after hyperparameter modification and augmentation. Thus, the model tested in this study was deemed superior to those presented in the extant literature. Hence, the concatenation of three different CNNs from scratch and transfer learning allows the extraction of distinct and significant features without leaving them out, enabling the model to make exact diagnoses.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42639297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ramzy, Marwan Torki, Mohamed Abdeen, O. Saif, Mustafa ElNainay, AbdAllah Alshanqiti, E. Nabil
{"title":"Hadiths Classification Using a Novel Author-Based Hadith Classification Dataset (ABCD)","authors":"A. Ramzy, Marwan Torki, Mohamed Abdeen, O. Saif, Mustafa ElNainay, AbdAllah Alshanqiti, E. Nabil","doi":"10.3390/bdcc7030141","DOIUrl":"https://doi.org/10.3390/bdcc7030141","url":null,"abstract":"Religious studies are a rich land for Natural Language Processing (NLP). The reason is that all religions have their instructions as written texts. In this paper, we apply NLP to Islamic Hadiths, which are the written traditions, sayings, actions, approvals, and discussions of the Prophet Muhammad, his companions, or his followers. A Hadith is composed of two parts: the chain of narrators (Sanad) and the content of the Hadith (Matn). A Hadith is transmitted from its author to a Hadith book author using a chain of narrators. The problem we solve focuses on the classification of Hadiths based on their origin of narration. This is important for several reasons. First, it helps determine the authenticity and reliability of the Hadiths. Second, it helps trace the chain of narration and identify the narrators involved in transmitting Hadiths. Finally, it helps understand the historical and cultural contexts in which Hadiths were transmitted, and the different levels of authority attributed to the narrators. To the best of our knowledge, and based on our literature review, this problem is not solved before using machine/deep learning approaches. To solve this classification problem, we created a novel Author-Based Hadith Classification Dataset (ABCD) collected from classical Hadiths’ books. The ABCD size is 29 K Hadiths and it contains unique 18 K narrators, with all their information. We applied machine learning (ML), and deep learning (DL) approaches. ML was applied on Sanad and Matn separately; then, we did the same with DL. The results revealed that ML performs better than DL using the Matn input data, with a 77% F1-score. DL performed better than ML using the Sanad input data, with a 92% F1-score. We used precision and recall alongside the F1-score; details of the results are explained at the end of the paper. We claim that the ABCD and the reported results will motivate the community to work in this new area. Our dataset and results will represent a baseline for further research on the same problem.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47848493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Intelligent Bat Algorithm for Web Service Selection with QoS Uncertainty","authors":"Abdelhak Etchiali, Fethallah Hadjila, Amina Bekkouche","doi":"10.3390/bdcc7030140","DOIUrl":"https://doi.org/10.3390/bdcc7030140","url":null,"abstract":"Currently, the selection of web services with an uncertain quality of service (QoS) is gaining much attention in the service-oriented computing paradigm (SOC). In fact, searching for a service composition that fulfills a complex user’s request is known to be NP-complete. The search time is mainly dependent on the number of requested tasks, the size of the available services, and the size of the QoS realizations (i.e., sample size). To handle this problem, we propose a two-stage approach that reduces the search space using heuristics for ranking the task services and a bat algorithm metaheuristic for selecting the final near-optimal compositions. The fitness used by the metaheuristic aims to fulfil all the global constraints of the user. The experimental study showed that the ranking heuristics, termed “fuzzy Pareto dominance” and “Zero-order stochastic dominance”, are highly effective compared to the other heuristics and most of the existing state-of-the-art methods.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46069088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Corradini, Sara Pettinari, B. Re, Lorenzo Rossi, F. Tiezzi
{"title":"Executable Digital Process Twins: Towards the Enhancement of Process-Driven Systems","authors":"F. Corradini, Sara Pettinari, B. Re, Lorenzo Rossi, F. Tiezzi","doi":"10.3390/bdcc7030139","DOIUrl":"https://doi.org/10.3390/bdcc7030139","url":null,"abstract":"The development of process-driven systems and the advancements in digital twins have led to the birth of new ways of monitoring and analyzing systems, i.e., digital process twins. Specifically, a digital process twin can allow the monitoring of system behavior and the analysis of the execution status to improve the whole system. However, the concept of the digital process twin is still theoretical, and process-driven systems cannot really benefit from them. In this regard, this work discusses how to effectively exploit a digital process twin and proposes an implementation that combines the monitoring, refinement, and enactment of system behavior. We demonstrated the proposed solution in a multi-robot scenario.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48919845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}