具有QoS不确定性的Web服务选择智能Bat算法

IF 3.7 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Abdelhak Etchiali, Fethallah Hadjila, Amina Bekkouche
{"title":"具有QoS不确定性的Web服务选择智能Bat算法","authors":"Abdelhak Etchiali, Fethallah Hadjila, Amina Bekkouche","doi":"10.3390/bdcc7030140","DOIUrl":null,"url":null,"abstract":"Currently, the selection of web services with an uncertain quality of service (QoS) is gaining much attention in the service-oriented computing paradigm (SOC). In fact, searching for a service composition that fulfills a complex user’s request is known to be NP-complete. The search time is mainly dependent on the number of requested tasks, the size of the available services, and the size of the QoS realizations (i.e., sample size). To handle this problem, we propose a two-stage approach that reduces the search space using heuristics for ranking the task services and a bat algorithm metaheuristic for selecting the final near-optimal compositions. The fitness used by the metaheuristic aims to fulfil all the global constraints of the user. The experimental study showed that the ranking heuristics, termed “fuzzy Pareto dominance” and “Zero-order stochastic dominance”, are highly effective compared to the other heuristics and most of the existing state-of-the-art methods.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Intelligent Bat Algorithm for Web Service Selection with QoS Uncertainty\",\"authors\":\"Abdelhak Etchiali, Fethallah Hadjila, Amina Bekkouche\",\"doi\":\"10.3390/bdcc7030140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the selection of web services with an uncertain quality of service (QoS) is gaining much attention in the service-oriented computing paradigm (SOC). In fact, searching for a service composition that fulfills a complex user’s request is known to be NP-complete. The search time is mainly dependent on the number of requested tasks, the size of the available services, and the size of the QoS realizations (i.e., sample size). To handle this problem, we propose a two-stage approach that reduces the search space using heuristics for ranking the task services and a bat algorithm metaheuristic for selecting the final near-optimal compositions. The fitness used by the metaheuristic aims to fulfil all the global constraints of the user. The experimental study showed that the ranking heuristics, termed “fuzzy Pareto dominance” and “Zero-order stochastic dominance”, are highly effective compared to the other heuristics and most of the existing state-of-the-art methods.\",\"PeriodicalId\":36397,\"journal\":{\"name\":\"Big Data and Cognitive Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bdcc7030140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7030140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

目前,在面向服务的计算范式(SOC)中,选择具有不确定服务质量(QoS)的web服务越来越受到关注。事实上,搜索满足复杂用户请求的服务组合是NP完全的。搜索时间主要取决于请求的任务数量、可用服务的大小和QoS实现的大小(即样本大小)。为了解决这个问题,我们提出了一种两阶段的方法,该方法使用启发式方法对任务服务进行排名,并使用bat算法元启发式方法来选择最终的接近最优的组合,从而减少搜索空间。元启发式所使用的适应度旨在满足用户的所有全局约束。实验研究表明,与其他启发式方法和大多数现有的最先进方法相比,被称为“模糊Pareto优势”和“零阶随机优势”的排序启发式方法是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Intelligent Bat Algorithm for Web Service Selection with QoS Uncertainty
Currently, the selection of web services with an uncertain quality of service (QoS) is gaining much attention in the service-oriented computing paradigm (SOC). In fact, searching for a service composition that fulfills a complex user’s request is known to be NP-complete. The search time is mainly dependent on the number of requested tasks, the size of the available services, and the size of the QoS realizations (i.e., sample size). To handle this problem, we propose a two-stage approach that reduces the search space using heuristics for ranking the task services and a bat algorithm metaheuristic for selecting the final near-optimal compositions. The fitness used by the metaheuristic aims to fulfil all the global constraints of the user. The experimental study showed that the ranking heuristics, termed “fuzzy Pareto dominance” and “Zero-order stochastic dominance”, are highly effective compared to the other heuristics and most of the existing state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data and Cognitive Computing
Big Data and Cognitive Computing Business, Management and Accounting-Management Information Systems
CiteScore
7.10
自引率
8.10%
发文量
128
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信