M. Chun, Hyeong-min Jin, Sung Young Lee, O. Kwon, C. Choi, Jong Min Park, Jung-in Kim
{"title":"Effects of Fully Filling Deep Electron/Hole Traps in Optically Stimulated Luminescence Dosimeters in the Kilovoltage Energy Range","authors":"M. Chun, Hyeong-min Jin, Sung Young Lee, O. Kwon, C. Choi, Jong Min Park, Jung-in Kim","doi":"10.14407/jrpr.2021.00339","DOIUrl":"https://doi.org/10.14407/jrpr.2021.00339","url":null,"abstract":"Background: This study investigated the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps in the kV energy ranges. Materials and Methods: The experimental group consisted of InLight nanoDots, whose deep electron/hole traps were fully filled with 5 kGy pre-irradiation (OSLD exp ), whereas the non-pre-irradiated OSLDs were arranged as a control group (OSLD cont ). Absorbed doses for 75, 80, 85, 90, 95, 100, and 105 kVp with 200 mA and 40 ms were measured and defined as the unit doses for each energy value. A bleaching device equipped with a 520-nm long-pass filter was used, and the strong beam mode was used to read out signal counts. The characteristics were investigated in terms of fading, dose sensitivities according to the accumulated doses, and dose linearity. Results and Discussion: In OSLD exp , the average normalized counts (sensitivities) were 12.7%, 14.0%, 15.0%, 10.2%, 18.0%, 17.9%, and 17.3% higher compared with those in OSLD cont for 75, 80, 90, 95, 100, and 105 kVp, respectively. The dose accumulation and bleaching time did not significantly alter the sensitivity, regardless of the filling of deep traps for all radiation qualities. Both OSLD exp and OSLD cont exhibited good linearity, by showing coefficients determination (R 2 ) > 0.99. The OSL sensitivities can be increased by filling of deep electron/hole traps in the energy ranges between 75 and 105 kVp, and they exhibited no significant variations according to the bleaching time.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"58 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88030704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dose Estimation Model for Terminal Buds in Radioactively Contaminated Fir Trees","authors":"I. Kawaguchi, H. Kido, Yoshito Watanabe","doi":"10.14407/jrpr.2021.00409","DOIUrl":"https://doi.org/10.14407/jrpr.2021.00409","url":null,"abstract":"Background: After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, biological alterations in the natural biota, including morphological changes of fir trees in forests surrounding the power plant, have been reported. Focusing on the terminal buds involved in the morphological formation of fir trees, this study developed a method for estimating the absorbed radiation dose rate using radionuclide distribution measurements from tree organs.Materials and Methods: A phantom composed of three-dimensional (3D) tree organs was constructed for the three upper whorls of the fir tree. A terminal bud was evaluated using Monte Carlo simulations for the absorbed dose rate of radionuclides in the tree organs of the whorls. Evaluation of the absorbed dose targeted 131I, 134Cs, and 137Cs, the main radionuclides subsequent to the FDNPP accident. The dose contribution from each tree organ was calculated separately using dose coefficients (DC), which express the ratio between the average activity concentration of a radionuclide in each tree organ and the dose rate at the terminal bud.Results and Discussion: The dose estimation indicated that the radionuclides in the terminal bud and bud scale contributed to the absorbed dose rate mainly by beta rays, whereas those in 1-year-old trunk/branches and leaves were contributed by gamma rays. However, the dose contribution from radionuclides in the lower trunk/branches and leaves was negligible.Conclusion: The fir tree model provides organ-specific DC values, which are satisfactory for the practical calculation of the absorbed dose rate of radiation from inside the tree. These calculations are based on the measurement of radionuclide concentrations in tree organs on the 1-year-old leader shoots of fir trees. With the addition of direct gamma ray measurements of the absorbed dose rate from the tree environment, the total absorbed dose rate was estimated in the terminal bud of fir trees in contaminated forests.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"203 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76036866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takahiko Kono, Masato Tanaka, Hitomi Tanaka, M. Shimo, H. Torii, Kazuko Uno
{"title":"Analysis of the Activities of the Website “Question and Answer about Radiation in Daily Life” after the Accident at the Fukushima Daiichi Nuclear Power Plant and Some Lessons Learned from It: To Pass on This Experience to the Future","authors":"Takahiko Kono, Masato Tanaka, Hitomi Tanaka, M. Shimo, H. Torii, Kazuko Uno","doi":"10.14407/jrpr.2021.00346","DOIUrl":"https://doi.org/10.14407/jrpr.2021.00346","url":null,"abstract":"After the accident at the Fukushima Daiichi Nuclear Power Plant, artificial radionuclides such as radioactive cesium and iodine were released into the environment. It caused great anxiety not only in the vicinity of the Fukushima Daiichi Nuclear Power Plant but also in other regions of the world. Some members of the Japan Health Physics Society (JHPS), a leading academic society in Japan in the field of radiation protection, volunteered to establish a website called “Question and Answer (Q&A) about radiation in daily life” shortly after the accident to help reduce the residents’ anxiety about the health effects of radiation. In August 2011, “Committee for Q&A about radiation in daily life” was established in JHPS, making the website-related activities a responsibility of JHPS. The Q&A website continued to respond to the questions from the general public with expertise and sincerity until February 2013 when the Committee members decided to end the activities because the number of questions received had gradually decreased with the passage of time. This paper aims to introduce the following: the activities of the Q&A website during the two years (2011–2013), the stance chosen for the activities, the information related to the website activities and the analysis of Twitter data. Building on the experience and the knowledge obtained from the activities, it also discusses issues and experiences that can be utilized in the initial response to emergencies for radiation protection experts as well as those in other fields.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"201 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76985689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhao Peng, Ning Gao, Bingzhi Wu, Zhi Chen, X. G. Xu
{"title":"A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era","authors":"Zhao Peng, Ning Gao, Bingzhi Wu, Zhi Chen, X. G. Xu","doi":"10.14407/jrpr.2021.00402","DOIUrl":"https://doi.org/10.14407/jrpr.2021.00402","url":null,"abstract":"The exciting advancement related to the “modeling of digital human” in terms of a computational phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convolutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These advancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demonstrated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radiation- transport Computations in Heterogeneous EnviRonments) to problems in radiation protection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calculations.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"105 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78187476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Shin, Sung Young Lee, Hyeong-min Jin, Jeong-Hee Kim, S. Kang, Jung-in Kim, Seongmoon Jung
{"title":"Development and Evaluation of a Thimble-Like Head Bolus Shield for Hemi-Body Electron Beam Irradiation Technique","authors":"W. Shin, Sung Young Lee, Hyeong-min Jin, Jeong-Hee Kim, S. Kang, Jung-in Kim, Seongmoon Jung","doi":"10.14407/jrpr.2022.00010","DOIUrl":"https://doi.org/10.14407/jrpr.2022.00010","url":null,"abstract":"Background: The hemi-body electron beam irradiation (HBIe–) technique has been proposed for the treatment of mycosis fungoides. It spares healthy skin using an electron shield. However, shielding electrons is complicated owing to electron scattering effects. In this study, we developed a thimble-like head bolus shield that surrounds the patient’s entire head to prevent irradiation of the head during HBIe–.Materials and Methods: The feasibility of a thimble-like head bolus shield was evaluated using a simplified Geant4 Monte Carlo (MC) simulation. Subsequently, the head bolus was manufactured using a three-dimensional (3D) printed mold and Ecoflex 00-30 silicone. The fabricated head bolus was experimentally validated by measuring the dose to the Rando phantom using a metal-oxide-semiconductor field-effect transistor (MOSFET) detector with clinical configuration of HBIe–.Results and Discussion: The thimble-like head bolus reduced the electron fluence by 2% compared with that without a shield in the MC simulations. In addition, an improvement in fluence degradation outside the head shield was observed. In the experimental validation using the inhouse- developed bolus shield, this head bolus reduced the electron dose to approximately 2.5% of the prescribed dose.Conclusion: A thimble-like head bolus shield for the HBIe– technique was developed and validated in this study. This bolus effectively spares healthy skin without underdosage in the region of the target skin in HBIe–.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87116741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bias-corrected Hp(10)-to-Organ-Absorbed Dose Conversion Coefficients for the Epidemiological Study of Korean Radiation Workers.","authors":"Areum Jeong, Tae-Eun Kwon, Wonho Lee, Sunhoo Park","doi":"10.14407/jrpr.2022.00052","DOIUrl":"10.14407/jrpr.2022.00052","url":null,"abstract":"<p><strong>Background: </strong>The effects of radiation on the health of radiation workers who are constantly susceptible to occupational exposure must be assessed based on an accurate and reliable reconstruction of organ-absorbed doses that can be calculated using personal dosimeter readings measured as <math><mrow><msub><mi>H</mi><mtext>p</mtext></msub><mo>(</mo><mn>10</mn><mo>)</mo></mrow></math> and dose conversion coefficients. However, the data used in dose reconstruction contain significant biases arising from a lack of reality and could result in an inaccurate measure of organ-absorbed doses. Therefore, this study quantified the biases involved in organ dose reconstruction and calculated the bias-corrected <math><mrow><msub><mi>H</mi><mtext>p</mtext></msub><mo>(</mo><mn>10</mn><mo>)</mo></mrow></math>-to-organ-absorbed dose coefficients for the use in epidemiological studies of Korean radiation workers.</p><p><strong>Materials and methods: </strong>Two major biases were considered: (1) the bias in <math><mrow><msub><mi>H</mi><mtext>p</mtext></msub><mo>(</mo><mn>10</mn><mo>)</mo></mrow></math> arising from the difference between the dosimeter calibration geometry and the actual exposure geometry and (2) the bias in air kerma-to-<math><mrow><msub><mi>H</mi><mtext>p</mtext></msub><mo>(</mo><mn>10</mn><mo>)</mo></mrow></math> conversion coefficients resulting from geometric differences between the human body and slab phantom. The biases were quantified by implementing personal dosimeters on the slab and human phantoms coupled with Monte Carlo method and considered to calculate the bias-corrected <math><mrow><msub><mi>H</mi><mtext>p</mtext></msub><mo>(</mo><mn>10</mn><mo>)</mo></mrow></math>-to-organ-absorbed dose conversion coefficients.</p><p><strong>Results and discussion: </strong>The bias in <math><mrow><msub><mi>H</mi><mtext>p</mtext></msub><mo>(</mo><mn>10</mn><mo>)</mo></mrow></math> was significant for large incident angles and low energies (e.g., 0.32 for right lateral at 218 keV), whereas the bias in dose coefficients was significant for the posterior-anterior (PA) geometry only (e.g., 0.79 at 218 keV). The bias-corrected <math><mrow><msub><mi>H</mi><mtext>p</mtext></msub><mo>(</mo><mn>10</mn><mo>)</mo></mrow></math>-to-organ-absorbed dose conversion coefficients derived in this study were up to 3.09-fold greater than those from ICRP publications without considering the biases.</p><p><strong>Conclusion: </strong>The obtained results will aid future studies in assessing the health effects of occupational exposure of Korean radiation workers. The bias-corrected dose coefficients of this study can be used to calculate organ doses for Korean radiation workers based personal dose records.</p>","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"47 3","pages":"158-166"},"PeriodicalIF":0.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503397/pdf/nihms-1923473.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10652410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Sasaki, H. Yoshida, M. Kai, Y. H. Jeong, Kyo-Youn Kim, Hee-Seock Lee
{"title":"Role and Collaboration of Radiation Protection Experts: Summary of Discussions between the Japan Health Physics Society and the Korean Association of Radiation Protection Related to Tritiated Water","authors":"M. Sasaki, H. Yoshida, M. Kai, Y. H. Jeong, Kyo-Youn Kim, Hee-Seock Lee","doi":"10.14407/jrpr.2021.00360","DOIUrl":"https://doi.org/10.14407/jrpr.2021.00360","url":null,"abstract":"","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"63 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75082753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Kuroda, Jun Goto, H. Yoshida, Takeshi Takahashi
{"title":"Perceptions of Residents in Relation to Smartphone Applications to Promote Understanding of Radiation Exposure after the Fukushima Accident: A Cross-Sectional Study within and outside Fukushima Prefecture","authors":"Y. Kuroda, Jun Goto, H. Yoshida, Takeshi Takahashi","doi":"10.14407/jrpr.2021.00073","DOIUrl":"https://doi.org/10.14407/jrpr.2021.00073","url":null,"abstract":"Background: We conducted a cross-sectional study of residents within and outside Fukushima Prefecture to clarify their perceptions of the need for smartphone applications (apps) for explaining exposure doses. The results will lead to more effective methods for identifying target groups for future app development by researchers and municipalities, which will promote residents’ understanding of radiological situations. Materials and Methods: In November 2019, 400 people in Fukushima Prefecture and 400 people outside were surveyed via a web-based questionnaire. In addition to basic characteristics, survey items included concerns about radiation levels and intention to use a smartphone app to keep track of exposure. The analysis was conducted by stratifying responses in each region and then cross-tabulating responses to concerns about radiation levels and intention to use an app by demographic variables. The intention to use an app was analyzed by binomial logistic regression analysis. Text-mining analyses were conducted in KH Coder software. Results and Discussion: Outside Fukushima Prefecture, concerns about the medical exposure of women to radiation exceeded 30%. Within the prefecture, the medical exposure of women, purchasing food products, and consumption of own-grown food were the main concerns. Within the prefecture, having children under the age of 18, the experience of measurement, and having experience of evacuation were significantly related to the intention to use an app. Conclusion: Regional and individual differences were evident. Since respondents differ, it is necessary to develop and promote app use in accordance with their needs and with phases of reconstruction. We expect that a suitable app will not only collect data but also connect local service providers and residents, while protecting personal information.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"29 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84659433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Validation of a Model for Estimating Individual External Dose Based on Ambient Dose Equivalent and Life Patterns","authors":"R. Sato, K. Yoshimura, Y. Sanada, Tetsuro Sato","doi":"10.14407/jrpr.2021.00290","DOIUrl":"https://doi.org/10.14407/jrpr.2021.00290","url":null,"abstract":"Background: After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, a model was developed to estimate the external exposure doses for residents who were expected to return to their homes after evacuation orders were lifted. However, the model’s accuracy and uncer-tainties in parameters used to estimate external doses have not been evaluated. Materials and Methods: The model estimates effective doses based on the integrated ambient dose equivalent ( H * (10)) and life patterns, considering a dose reduction factor to estimate the indoor H * (10) and a conversion factor from H * (10) to the effective dose. Because personal dose equivalent ( H p (10)) has been reported to agree well with the effective dose after the FDNPS accident, this study validates the model’s accuracy by comparing the estimated effective doses with H p (10). The H p (10) and life pattern data were collected for 36 adult participants who lived or worked near the FDNPS in 2019. Results and Discussion: The estimated effective doses correlated significantly with H p (10); however, the estimated effective doses were lower than H p (10) for indoor sites. A comparison with the measured indoor H * (10) showed that the estimated indoor H * (10) was not underesti-mated. However, the H p (10) to H * (10) ratio indoors, which corresponds to the practical conversion factor from H * (10) to the effective dose, was significantly larger than the same ratio outdoors, meaning that the conversion factor of 0.6 is not appropriate for indoors due to the changes in irradiation geometry and gamma spectra. This could have led to a lower effective dose than H p (10). Conclusion: The estimated effective doses correlated significantly with H p (10), demonstrating the model’s applicability for effective dose estimation. However, the lower value of the effective dose indoors could be because the conversion factor did not reflect the actual environment.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"50 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91212100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junik Cho, Euidam Kim, Tae-Eun Kwon, Yoonsun Chung
{"title":"Derivation of External Exposure Characteristics of Industrial Radiography Based on Empirical Evidence","authors":"Junik Cho, Euidam Kim, Tae-Eun Kwon, Yoonsun Chung","doi":"10.14407/jrpr.2021.00423","DOIUrl":"https://doi.org/10.14407/jrpr.2021.00423","url":null,"abstract":"Background: This study aims to derive the characteristics of each work type for industrial radiography based on empirical evidence through expert advice and a survey of radiation workers of various types of industrial radiography.Materials and Methods: According to a Korean report, work types of industrial radiography are classified into indoor tests, underground pipe tests, tests in a shielded room (radiographic testing [RT] room test), outdoor field tests, and outdoor large structure tests. For each work type, exposure geometry and radiation sources were mainly identified through the expert advice and workers’ survey as reliable empirical evidence.Results and Discussion: The expert advice and survey results were consistent as the proportion of the work types were high in the order of RT room test, outdoor large structure test, underground pipe test, outdoor field test, and indoor test. The outdoor large structure test is the highest exposure risk work type in the industrial radiography. In most types of industrial radiography, radiation workers generally used 192Ir as the main source. In the results of the survey, the portion of sources was high in the order of 192Ir, X-ray generator, 60Co, and 75Se. As the exposure geometry, the antero-posterior geometry is dominant, and the rotational and isotropic geometry should be also considered with the work type.Conclusion: In this study, through expert advice and a survey, the external exposure characteristics for each work type of industrial radiography workers were derived. This information will be used in the reconstruction of organ dose for health effects assessment of Korean radiation workers.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":"9 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82400394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}