JPhys MaterialsPub Date : 2023-10-01DOI: 10.1088/2515-7639/ad025f
Agus Riyanto Poerwoprajitno, Nitish Baradwaj, Manish Kumar Singh, C. Barry Carter, Dale Huber, Rajiv Kalia, John Watt
{"title":"Asymmetric Nanoparticle Oxidation Observed In-Situ by the Evolution of Diffraction Contrast","authors":"Agus Riyanto Poerwoprajitno, Nitish Baradwaj, Manish Kumar Singh, C. Barry Carter, Dale Huber, Rajiv Kalia, John Watt","doi":"10.1088/2515-7639/ad025f","DOIUrl":"https://doi.org/10.1088/2515-7639/ad025f","url":null,"abstract":"Abstract The use of transmission electron microscopy (TEM) to observe real-time structural and compositional changes has proven to be a valuable tool for understanding the dynamic behavior of nanomaterials. However, identifying the nanoparticles of interest typically require an obvious change in position, size, or structure, as compositional changes may not be noticeable during the experiment. Oxidation or reduction can often result in subtle volume changes only, so elucidating mechanisms in real-time requires atomic-scale resolution or in-situ electron energy loss spectroscopy, which may not be widely accessible. Here, by monitoring the evolution of diffraction contrast, we can observe both structural and compositional changes in iron oxide nanoparticles, specifically the oxidation from a wüstite-magnetite (FeO@Fe 3 O 4 ) core – shell nanoparticle to single crystalline magnetite, Fe 3 O 4 nanoparticle. The in-situ TEM images reveal a distinctive light and dark contrast known as the ‘Ashby-Brown contrast’, which is a result of coherent strain across the core – shell interface. As the nanoparticles fully oxidize to Fe 3 O 4 , the diffraction contrast evolves and then disappears completely, which is then confirmed by modeling and simulation of TEM images. This represents a new, simplified approach to tracking the oxidation or reduction mechanisms of nanoparticles using in-situ TEM experiments.","PeriodicalId":36054,"journal":{"name":"JPhys Materials","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JPhys MaterialsPub Date : 2023-10-01DOI: 10.1088/2515-7639/acfdcf
Jordan Cole, Zoe Henderson, Andrew G Thomas, Christopher Castle, Adam Greer, Christopher Hardacre, Mattia Scardamaglia, Andrey Shavorskiy, Karen Louise Syres
{"title":"In situ XPS of Competitive CO<sub>2</sub>/H<sub>2</sub>O Absorption in an Ionic Liquid","authors":"Jordan Cole, Zoe Henderson, Andrew G Thomas, Christopher Castle, Adam Greer, Christopher Hardacre, Mattia Scardamaglia, Andrey Shavorskiy, Karen Louise Syres","doi":"10.1088/2515-7639/acfdcf","DOIUrl":"https://doi.org/10.1088/2515-7639/acfdcf","url":null,"abstract":"Abstract Superbasic ionic liquids (SBILs) are being investigated as potential carbon dioxide (CO 2 ) gas capture agents, however, the presence of H 2 O in the flue stream can inhibit the uptake of CO 2 . In this study a thin film of the SBIL trihexyltetradecylphosphonium 1,2,4-triazolide ([P 66614 ][124Triz]) was deposited onto rutile TiO 2 (110) using in situ electrospray deposition and studied upon exposure to CO 2 and H 2 O using in situ near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS). The molar uptake ratio of gas in the electrosprayed SBIL ( n gas :n IL ) was calculated to be 0.3:1 for CO 2 , 0.7:1 for H 2 O, and 0.9:1 for a CO 2 /H 2 O mixture. NAP-XPS taken at two different depths reveals that the competitive absorption of CO 2 and H 2 O in [P 66614 ][124Triz] varies with sampling depth. A greater concentration of CO 2 absorbs in the bulk layers, while more H 2 O adsorbs/absorbs at the surface. The presence of H 2 O in the gas mixture does not inhibit the absorption of CO 2 . Measurements taken during exposure and after the removal of gas indicate that CO 2 absorbed in the bulk does so reversibly, whilst CO 2 adsorbed/absorbed at the surface does so irreversibly. This is contrary to the fully reversible CO 2 reaction shown for bulk ionic liquids (ILs) in literature and suggests that irreversible absorption of CO 2 in our highly-structured thin films is largely attributed to reactions at the surface. This has potential implications on IL gas capture and thin film IL catalysis applications.","PeriodicalId":36054,"journal":{"name":"JPhys Materials","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135323720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JPhys MaterialsPub Date : 2023-10-01DOI: 10.1088/2515-7639/acfdce
Erica T Esteban, Jasmine J Garcia, Sophie R Windover, Joya Cooley
{"title":"Intrinsic thermal expansion and tunability of thermal expansion coefficient in Ni-substituted Co<sub>2</sub>V<sub>2</sub>O<sub>7</sub>","authors":"Erica T Esteban, Jasmine J Garcia, Sophie R Windover, Joya Cooley","doi":"10.1088/2515-7639/acfdce","DOIUrl":"https://doi.org/10.1088/2515-7639/acfdce","url":null,"abstract":"Abstract Framework oxide materials are well-known for exhibiting not only negative thermal expansion (NTE), but also demonstrating thermal expansion that can be controlled using composition as a tuning parameter. In this work, we study the intrinsic thermal expansion properties of Co 2 V 2 O 7 , which has shown bulk linear NTE, and attempt to understand how substituting Ni 2+ for Co 2+ will affect the thermal expansion. The isomorphic solid solution is synthesized through solid-state methods and characterized using x-ray diffraction (XRD), diffuse reflectance spectroscopy, and neutron diffraction. The size difference between Ni 2+ and Co 2+ as well as the polyhedral volume of each Co 2+ metal coordination environment in the crystal structure allows Ni 2+ to partially be directed toward one crystallographic site over the other. Variable temperature synchrotron XRD data are employed to understand intrinsic thermal expansion. Across the solid solution, no intrinsic NTE is observed at the microscopic level, yet a degree of tunability in the thermal expansion coefficient with Ni substitution is demonstrated. The disparities between the intrinsic and bulk thermal expansion properties suggest that a morphological mechanism may have resulted in NTE in the bulk.","PeriodicalId":36054,"journal":{"name":"JPhys Materials","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135323731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JPhys MaterialsPub Date : 2023-10-01DOI: 10.1088/2515-7639/ad01df
Swarup Biswas, Yongju Lee, Hyojeong Choi, Hyeok Kim
{"title":"Recent Developments in Non-Fullerene-Acceptor-Based Indoor Organic Solar Cells","authors":"Swarup Biswas, Yongju Lee, Hyojeong Choi, Hyeok Kim","doi":"10.1088/2515-7639/ad01df","DOIUrl":"https://doi.org/10.1088/2515-7639/ad01df","url":null,"abstract":"Abstract For over a decade, donor-acceptor blends composed of organic donors and fullerene acceptors dominated indoor organic solar cells (IOSCs). Numerous researchers have invested time to conduct extensive studies on developing new donor acceptor materials, interlayers, minimizing energy losses, and enhancing the open-circuit voltage ( V OC ) through device and material engineering, and optimizing device architectures to achieve highly efficient, environmentally stable, and commercially acceptable IOSCs. Through such efforts, the maximum power conversion efficiencies (PCEs) of IOSCs have surpassed 35%. In this regard, the transition from a fullerene to non-fullerene acceptor (NFA) is a useful strategy for enhancing the PCEs of IOSCs by allowing adjustment of the energy levels for compatibility with the indoor light spectrum and by improving photon absorption in the visible range, thereby boosting photocurrent generation and enhancing V OC . NFA-based indoor organic photovoltaic systems have recently drawn interest from the scholarly community. To compete with the standard batteries used in the Internet of Things devices, additional research is needed to enhance several characteristics, including manufacturing costs and device longevity, which must maintain at least 80% of their initial PCEs for more than 10 years. Further development in this field can greatly benefit from a thorough and comprehensive review on this field. Hence, this review explores recent advances in IOSCs systems based on NFAs. First, we explain several methods used to create extremely effective IOSCs, IOSCs based on fullerene acceptors are next reviewed and discussed. The disadvantages of using fullerene acceptors in IOSCs are noted. Then, we introduce NFAs and explore existing research on the subject. Finally, we discuss the commercial potential of NFA-based IOSCs and their future outlook.","PeriodicalId":36054,"journal":{"name":"JPhys Materials","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135655809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JPhys MaterialsPub Date : 2023-10-01Epub Date: 2023-09-26DOI: 10.1088/2515-7639/acf78c
Kazi Zihan Hossain, Sharif Amit Kamran, Alireza Tavakkoli, M Rashed Khan
{"title":"Machine learning (ML)-assisted surface tension and oscillation-induced elastic modulus studies of oxide-coated liquid metal (LM) alloys.","authors":"Kazi Zihan Hossain, Sharif Amit Kamran, Alireza Tavakkoli, M Rashed Khan","doi":"10.1088/2515-7639/acf78c","DOIUrl":"10.1088/2515-7639/acf78c","url":null,"abstract":"<p><p>Pendant drops of oxide-coated high-surface tension fluids frequently produce perturbed shapes that impede interfacial studies. Eutectic gallium indium or Galinstan are high-surface tension fluids coated with a ∼5 nm gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) film and falls under this fluid classification, also known as liquid metals (LMs). The recent emergence of LM-based applications often cannot proceed without analyzing interfacial energetics in different environments. While numerous techniques are available in the literature for interfacial studies- pendant droplet-based analyses are the simplest. However, the perturbed shape of the pendant drops due to the presence of surface oxide has been ignored frequently as a source of error. Also, exploratory investigations of surface oxide leveraging oscillatory pendant droplets have remained untapped. We address both challenges and present two contributing novelties- (a) by utilizing the machine learning (ML) technique, we predict the approximate surface tension value of perturbed pendant droplets, (ii) by leveraging the oscillation-induced bubble tensiometry method, we study the dynamic elastic modulus of the oxide-coated LM droplets. We have created our dataset from LM's pendant drop shape parameters and trained different models for comparison. We have achieved >99% accuracy with all models and added versatility to work with other fluids. The best-performing model was leveraged further to predict the approximate values of the nonaxisymmetric LM droplets. Then, we analyzed LM's elastic and viscous moduli in air, harnessing oscillation-induced pendant droplets, which provides complementary opportunities for interfacial studies alternative to expensive rheometers. We believe it will enable more fundamental studies of the oxide layer on LM, leveraging both symmetric and perturbed droplets. Our study broadens the materials science horizon, where researchers from ML and artificial intelligence domains can work synergistically to solve more complex problems related to surface science, interfacial studies, and other studies relevant to LM-based systems.</p>","PeriodicalId":36054,"journal":{"name":"JPhys Materials","volume":"6 4","pages":"045009"},"PeriodicalIF":4.8,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50163078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Universal material trends in extraordinary magnetoresistive devices","authors":"Ricci Erlandsen, Thierry Désiré Pomar, Lior Kornblum, Nini Pryds, Rasmus Bjørk, Dennis Valbjørn Christensen","doi":"10.1088/2515-7639/acfac0","DOIUrl":"https://doi.org/10.1088/2515-7639/acfac0","url":null,"abstract":"Abstract Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm 2 Vs −1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm 2 Vs −1 . An interface resistance below <?CDATA $rho_c = 10^{-4} Omega$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mi>c</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> <mml:mtext> </mml:mtext> <mml:mi mathvariant=\"normal\">Ω</mml:mi> </mml:math> cm 2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields.","PeriodicalId":36054,"journal":{"name":"JPhys Materials","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135131846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomaterials Interventions for Pelvic Organ Prolapse.","authors":"Katrina M Knight","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":36054,"journal":{"name":"JPhys Materials","volume":"6 1","pages":"19-21"},"PeriodicalIF":4.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986830/pdf/nihms-1872423.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9096903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JPhys MaterialsPub Date : 2021-01-01DOI: 10.1088/2515-7639/abf1ab
Albert F Rigosi, Antonio L Levy, Michael R Snure, Nicholas R Glavin
{"title":"Turn of the decade: versatility of 2D hexagonal boron nitride.","authors":"Albert F Rigosi, Antonio L Levy, Michael R Snure, Nicholas R Glavin","doi":"10.1088/2515-7639/abf1ab","DOIUrl":"10.1088/2515-7639/abf1ab","url":null,"abstract":"<p><p>The era of two-dimensional (2D) materials, in its current form, truly began at the time that graphene was first isolated just over 15 years ago. Shortly thereafter, the use of 2D hexagonal boron nitride (<i>h-</i>BN) had expanded in popularity, with use of the thin isolator permeating a significant number of fields in condensed matter and beyond. Due to the impractical nature of cataloguing every use or research pursuit, this review will cover ground in the following three subtopics relevant to this versatile material: growth, electrical measurements, and applications in optics and photonics. Through understanding how the material has been utilized, one may anticipate some of the exciting directions made possible by the research conducted up through the turn of this decade.</p>","PeriodicalId":36054,"journal":{"name":"JPhys Materials","volume":"4 3","pages":""},"PeriodicalIF":4.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370033/pdf/nihms-1729049.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39324300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JPhys MaterialsPub Date : 2020-04-01Epub Date: 2020-04-27DOI: 10.1088/2515-7639/ab82b3
Srinivas V Mandyam, Hyong M Kim, Marija Drndić
{"title":"Large area few-layer TMD film growths and their applications.","authors":"Srinivas V Mandyam, Hyong M Kim, Marija Drndić","doi":"10.1088/2515-7639/ab82b3","DOIUrl":"https://doi.org/10.1088/2515-7639/ab82b3","url":null,"abstract":"<p><p>Research on 2D materials is one of the core themes of modern condensed matter physics. Prompted by the experimental isolation of graphene, much attention has been given to the unique optical, electronic, and structural properties of these materials. In the past few years, semiconducting transition metal dichalcogenides (TMDs) have attracted increasing interest due to properties such as direct band gaps and intrinsically broken inversion symmetry. Practical utilization of these properties demands large-area synthesis. While films of graphene have been by now synthesized on the order of square meters, analogous achievements are difficult for TMDs given the complexity of their growth kinetics. This article provides an overview of methods used to synthesize films of mono- and few-layer TMDs, comparing spatial and time scales for the different growth strategies. A special emphasis is placed on the unique applications enabled by such large-scale realization, in fields such as electronics and optics.</p>","PeriodicalId":36054,"journal":{"name":"JPhys Materials","volume":"3 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/2515-7639/ab82b3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33466662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}