{"title":"The indole-based subincanadine alkaloids and their biogenetic congeners.","authors":"Manojkumar Gulabrao Kalshetti, Narshinha Panditrao Argade","doi":"10.1016/bs.alkal.2019.12.001","DOIUrl":"https://doi.org/10.1016/bs.alkal.2019.12.001","url":null,"abstract":"<p><p>The tryptamine-derived polycyclic bridged bioactive indole alkaloids subincanadines A-G were isolated in 2002 by Ohsaki and coworkers from the bark of the Brazilian medicinal plant Aspidosperma subincanum. Kobayashi proposed that subincanadines D-F could be biosynthetically resulting from stemmadenine via two different pathways and, furthermore, that the subincanadines A-C could be biogenetically resulting from subincanadines D and E. Kam and coworkers, in their focused efforts, isolated five indole alkaloids from Malaysian Kopsia arborea species, namely valparicine, apparicine, arboridinine, arborisidine, and arbornamine in combination with subincanadine E. On the basis of structural features, it has been proposed and proved in some examples that subincanadine E is a biogenetic precursor of these five different bioactive indole alkaloids bearing complex structural architectures. All important information on isolation, characterization, bioactivity, probable biogenetic pathways, and more specifically racemic and enantioselective total synthesis of subincanadine alkaloids and their biogenetic congeners are summarized in the present chapter. Special importance is given to the total synthesis and the synthetic strategies intended therein, comprising a set of main reactions.</p>","PeriodicalId":35785,"journal":{"name":"Alkaloids: Chemistry and Biology","volume":"83 ","pages":"187-223"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.alkal.2019.12.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37676659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The manzamine alkaloids.","authors":"Takaaki Kubota, Shin-Ichiro Kurimoto, Jun'ichi Kobayashi","doi":"10.1016/bs.alkal.2020.03.001","DOIUrl":"https://doi.org/10.1016/bs.alkal.2020.03.001","url":null,"abstract":"<p><p>The manzamine alkaloids are absolutely one of the most fascinating marine natural products. The representative manzamine alkaloids, manzamines A-C, were isolated from a marine sponge Haliclona sp. collected off Cape Manzamo, Okinawa, Japan. The manzamine alkaloids are a unique class of alkaloids possessing a characteristic heterocyclic system, and exhibit a diverse range of bioactivities including cytotoxicity, antimicrobial activity, antimalarial activity, antiviral and antiinflammatory activities, antiinsecticidal activity, and proteasome inhibitory activity. About 100 manzamine alkaloids have been isolated from more than 16 species of marine sponges belonging to 5 families. The unusual ring systems, an intriguing suggested biogenetic pathway, and promising biological activities of manzamine alkaloids have attracted great interest as challenging targets for the total synthesis. This review is the continuation of the previous review published in volume 60 of The Alkaloids and covers isolation, structure elucidation, biosynthesis and biogenesis, chemical synthesis, and biological activity of manzamine alkaloids reported from 2003 to 2018.</p>","PeriodicalId":35785,"journal":{"name":"Alkaloids: Chemistry and Biology","volume":"84 ","pages":"1-124"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.alkal.2020.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37944348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids.","authors":"Strahil Berkov, Edison Osorio, Francesc Viladomat, Jaume Bastida","doi":"10.1016/bs.alkal.2019.10.002","DOIUrl":"https://doi.org/10.1016/bs.alkal.2019.10.002","url":null,"abstract":"<p><p>The Amaryllidaceae alkaloids are a distinctive chemotaxonomic feature of the subfamily Amaryllidoideae of the family Amaryllidaceae, which consists of 59 genera and >800 species distributed primarily in tropical and subtropical areas. Since the first isolation, ca. 140 ago, >600 structurally diverse Amaryllidaceae alkaloids have been reported from ca. 350 species (44% of all species in the subfamily). A few have been found in other plant families, but the majority are unique to the Amaryllidoideae. These alkaloids have attracted considerable research interest due to their wide range of biological and pharmacological activities, which have been extensively reviewed. In this chapter we provide a review of the 636 structures of isolated or tentatively identified alkaloids from plants of the Amaryllidoideae and their classification into 42 skeleton types, as well as a discussion on their distribution, and chemotaxonomical and chemoecological aspects.</p>","PeriodicalId":35785,"journal":{"name":"Alkaloids: Chemistry and Biology","volume":"83 ","pages":"113-185"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.alkal.2019.10.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37676658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles B de Koning, Kennedy J Ngwira, Amanda L Rousseau
{"title":"Biosynthesis, synthetic studies, and biological activities of the jadomycin alkaloids and related analogues.","authors":"Charles B de Koning, Kennedy J Ngwira, Amanda L Rousseau","doi":"10.1016/bs.alkal.2020.02.001","DOIUrl":"https://doi.org/10.1016/bs.alkal.2020.02.001","url":null,"abstract":"<p><p>The jadomycins are an expanding class of compounds produced from Streptomyces venezuelae, by diverting the normal biosynthesis which provides the antibiotic chloramphenicol. In the presence of amino acids, and either by heat shock, supplementation with ethanol, or when phage SV1 is added to the culture, the formation of substituted jadomycins and benzo[b]phenanthridines can be achieved. The first part of this review provides details of intermediates involved in the biosynthesis of the jadomycins and the related benzo[b]phenanthridines. Both the jadomycins and the benzo[b]phenanthridines share biosynthetic pathways with a large class of naturally occurring compounds known as the angucyclines. The biosynthetic pathways diverge when it is postulated that an intermediate quinone, such as 3-(2-formyl-6-hydroxy-4-methylphenyl)-8-hydroxy-1,4-naphthoquinone-2-carboxylic acid is formed. The quinone then undergoes reactions with amino acids and derivatives in the culture medium to ultimately afford a library of jadomycins and a few benzo[b]phenanthridines. The second part of the review initially details synthetic efforts toward the synthesis of the naturally occurring benzo[b]phenanthridine, phenanthroviridin, and then outlines methods that have been used to assemble a selection of jadomycins. Total syntheses of jadomycin A and B, derived from l-isoleucine, are described. In addition, the synthesis of the aglycon of jadomycins M, W, S, and T is outlined. These four jadomycins were derived from l-methionine, l-tryptophan, l-serine and l-threonine respectively. As a result of these synthetic efforts, the structures of jadomycin S and T have been revised. The third part of the review describes the reported antibacterial and anticancer activities of both the jadomycins and some naturally occurring benzo[b]phenanthridines.</p>","PeriodicalId":35785,"journal":{"name":"Alkaloids: Chemistry and Biology","volume":"84 ","pages":"125-199"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.alkal.2020.02.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37944349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent applications of the Wittig reaction in alkaloid synthesis.","authors":"Majid M Heravi, Vahideh Zadsirjan, Hoda Hamidi, Mansoureh Daraie, Tayebeh Momeni","doi":"10.1016/bs.alkal.2020.02.002","DOIUrl":"https://doi.org/10.1016/bs.alkal.2020.02.002","url":null,"abstract":"<p><p>The Wittig reaction is the chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (the Wittig reagent) to afford an alkene and triphenylphosphine oxide. Noteworthy, this reaction results in the synthesis of alkenes in a selective and predictable fashion. Thus, it became as one of the keystone of synthetic organic chemistry, especially in the total synthesis of natural products, where the selectivity of a reaction is paramount of importance. A literature survey disclosed the existence of vast numbers of related reports and comprehensive reviews on the applications of this important name reaction in the total synthesis of natural products. However, the aim of this chapter is to underscore, the applications of the Wittig reaction in the total synthesis of one the most important and prevalent classes of natural products, the alkaloids, especially those showing important and diverse biological activities.</p>","PeriodicalId":35785,"journal":{"name":"Alkaloids: Chemistry and Biology","volume":"84 ","pages":"201-334"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.alkal.2020.02.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37944350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Chemical Synthesis and Applications of Tropane Alkaloids.","authors":"Samson Afewerki, Jia-Xin Wang, Wei-Wei Liao, Armando Córdova","doi":"10.1016/bs.alkal.2018.06.001","DOIUrl":"https://doi.org/10.1016/bs.alkal.2018.06.001","url":null,"abstract":"<p><p>Tropanes are an important class of alkaloid natural products that are found in plants all over the world. These compounds can exhibit significant biological activity and are among the oldest known medicines. In the early 19th century, tropanes were isolated, characterized, and synthesized by notable chemical researchers. Their significant biological activities have inspired tremendous research efforts toward their synthesis and the elucidation of their pharmacological activity both in academia and in industry. In this chapter, which addresses the developments in this field since 1994, the focus is on the synthesis of these compounds, and several examples of sophisticated synthetic protocols involving both asymmetric and catalytic approaches are described. In addition, the structures of more than 100 new alkaloids are included as well as the applications and pharmacological properties of some tropane alkaloids.</p>","PeriodicalId":35785,"journal":{"name":"Alkaloids: Chemistry and Biology","volume":"81 ","pages":"151-233"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.alkal.2018.06.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36944750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}