Journal of Electroanalytical Chemistry最新文献

筛选
英文 中文
The research of ammonium acetate electrolyte with Prussian blue analogue cathode for high performance ammonium ion battery 高性能铵离子电池用普鲁士蓝模拟阴极乙酸铵电解液的研究
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-07 DOI: 10.1016/j.jelechem.2025.119179
Hao Zhang, Yaobo Ma, Jingyu Jia, Xinyue Gao, Ruoqi Li, Wenyang Nan, Xinru Feng, Ran Tian, Yun Gao
{"title":"The research of ammonium acetate electrolyte with Prussian blue analogue cathode for high performance ammonium ion battery","authors":"Hao Zhang,&nbsp;Yaobo Ma,&nbsp;Jingyu Jia,&nbsp;Xinyue Gao,&nbsp;Ruoqi Li,&nbsp;Wenyang Nan,&nbsp;Xinru Feng,&nbsp;Ran Tian,&nbsp;Yun Gao","doi":"10.1016/j.jelechem.2025.119179","DOIUrl":"10.1016/j.jelechem.2025.119179","url":null,"abstract":"<div><div>In recent years, the performance of ammonium ion batteries has become more and more concerned. In this paper, the ammonium acetate electrolyte with Prussian blue analogue (PBA) cathode to achieve high performance ammonium ion battery is researched. We study the structure and physical characteristics of the ammonium acetate electrolyte with different concentration. By testing the Prussian blue analogue electrode with different electrolyte, the specific capacity of the battery with 1 M ammonium acetate is as high as 97 mAh g<sup>−1</sup> and 8 M electrolyte has the best high rate performance. In this research, we found that the highest concentration electrolytes doesn't have the best electrochmical performance due to high ammonium ion content suppress the ion transportation and hind the ammonium ion inserting/extracting the PBA cathode. These findings emphasize the need for balanced electrolyte design to harmonize ion mobility and electrochemical stability, offering new insights for aqueous energy storage systems.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"990 ","pages":"Article 119179"},"PeriodicalIF":4.1,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143932114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyvinyl-imidazole and vinyl-ferrocene composite-derived Fe-N-C electrocatalysts for oxygen reduction reaction in anion exchange membrane fuel cells 聚氯乙烯-咪唑和乙烯基-二茂铁复合衍生的Fe-N-C电催化剂在阴离子交换膜燃料电池中的氧还原反应
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-07 DOI: 10.1016/j.jelechem.2025.119183
Srinu Akula , Margus Marandi , Uno Mäeorg , Jekaterina Kozlova , Alexey Treshchalov , Arvo Kikas , Vambola Kisand , Maike Käärik , Jaan Leis , Jaan Aruväli , Artur Kaljo , Kaupo Kukli , Kaido Tammeveski
{"title":"Polyvinyl-imidazole and vinyl-ferrocene composite-derived Fe-N-C electrocatalysts for oxygen reduction reaction in anion exchange membrane fuel cells","authors":"Srinu Akula ,&nbsp;Margus Marandi ,&nbsp;Uno Mäeorg ,&nbsp;Jekaterina Kozlova ,&nbsp;Alexey Treshchalov ,&nbsp;Arvo Kikas ,&nbsp;Vambola Kisand ,&nbsp;Maike Käärik ,&nbsp;Jaan Leis ,&nbsp;Jaan Aruväli ,&nbsp;Artur Kaljo ,&nbsp;Kaupo Kukli ,&nbsp;Kaido Tammeveski","doi":"10.1016/j.jelechem.2025.119183","DOIUrl":"10.1016/j.jelechem.2025.119183","url":null,"abstract":"<div><div>Anion exchange membrane fuel cells (AEMFCs) are sustainable and clean electrochemical energy conversion devices due to their high feasibility of employing platinum-free catalysts for oxygen reduction reaction (ORR). Herein, we selected vinylferrocene and vinylimidazole polymer composite with their conductive and coordination networks anticipated for their diverse electrochemical applications. The prepared catalyst materials possess highly abundant ORR-active centers and favourable physico-chemical properties like high specific surface area, pore size distribution, defects and surface chemical states, which are confirmed by X-ray diffraction, Raman spectroscopy, N<sub>2</sub> physisorption, X-ray photoelectron spectroscopy and scanning transmission electron microscopy. The catalyst materials are assessed through optimization of different ratios of vinylferrocene and vinylimidazole along with zinc nitrate treatment to attain the prominent textural properties for efficient electrocatalytic ORR activity in 0.1 M KOH electrolyte and the half-wave potential is 0.80–0.85 V vs. RHE, which is comparable to that of the Pt/C benchmark. Amongst, FerNC-T2 shows higher ORR activity than other prepared catalysts. This is accredited to the highly active Fe-N<sub>x</sub> sites and hierarchical porous structure of the electrocatalyst. This work made a significant impact in developing efficient electrocatalysts for AEMFC cathodes owing to the excellent electrochemical stability in RDE study and high-power density in an AEMFC (344 mW cm<sup>−2</sup>).</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"991 ","pages":"Article 119183"},"PeriodicalIF":4.1,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143941754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A synchronous dual-mode electrochemiluminescence/electrochemical detection of carcinoembryonic antigen at low potential 低电位下同步双模电化学发光/电化学检测癌胚抗原
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-06 DOI: 10.1016/j.jelechem.2025.119177
Ru-Kai Wei, Lei Shang, Wei Zhang, Xiao-Jian Li, Li-Ping Jia, Rong-Na Ma, Huai-Sheng Wang
{"title":"A synchronous dual-mode electrochemiluminescence/electrochemical detection of carcinoembryonic antigen at low potential","authors":"Ru-Kai Wei,&nbsp;Lei Shang,&nbsp;Wei Zhang,&nbsp;Xiao-Jian Li,&nbsp;Li-Ping Jia,&nbsp;Rong-Na Ma,&nbsp;Huai-Sheng Wang","doi":"10.1016/j.jelechem.2025.119177","DOIUrl":"10.1016/j.jelechem.2025.119177","url":null,"abstract":"<div><div>Recently, dual-mode electrochemiluminescence/electrochemical (ECL/EC) detection strategies have been used for improving the detection accuracy by mutual correction. Unfortunately, the ECL and EC signals usually appeared at two far-apart potentials, resulting in different test environments and unnecessary side effects. To solve this problem, in this work, we constructed a dual-mode ECL/EC aptsensor, achieving the synchronous ECL and EC detections for the carcinoembryonic antigen (CEA) at the same low potential. The CEA aptamer (Apt) was firstly anchored on reduced graphene oxide (rGO), which promoted the subsequent adsorption of cationic Hemin through the electrostatic and π-π stacking interaction. The absorbed Hemin could accelerate the electro-reduction of dissolved oxygen in the air-saturated Ru(bpy)<sub>3</sub><sup>2+</sup>-Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub> system, generating not only a reduction peak current at −0.2 V (vs. Ag/AgCl) but also many hydroxyl radicals (HO‧). The HO‧ could oxidize the Ru(bpy)<sub>3</sub><sup>2+</sup> to be Ru(bpy)<sub>3</sub><sup>3+</sup>, followed by the ECL signal produced by the reaction between Ru(bpy)<sub>3</sub><sup>3</sup> and Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>. So, ECL and EC peak signals synchronously emerged at −0.2 V (vs. Ag/AgCl). When the CEA was present, it took the Apt away from electrode and decreased the amount of Hemin followed by the reduced reduction current and ECL, managing synchronous dual-mode detection in the same test environment. The obtained dual-mode sensing platform exhibited a good analytical performance in the clinical application.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"990 ","pages":"Article 119177"},"PeriodicalIF":4.1,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143917992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance improvement of O3-type Na(NiFeMn)1/3O2 cathodes by tannic acid-derived carbon coating 单宁酸碳包覆改善o3型Na(NiFeMn)1/3O2阴极性能
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-06 DOI: 10.1016/j.jelechem.2025.119182
Zixiang Yang , Fengmei Liu , Tao Yu , Xu Wang , Qiumei Huang , Yang Hou , Qinghua Zhang , Xinxin Teng , Jianguo Lu
{"title":"Performance improvement of O3-type Na(NiFeMn)1/3O2 cathodes by tannic acid-derived carbon coating","authors":"Zixiang Yang ,&nbsp;Fengmei Liu ,&nbsp;Tao Yu ,&nbsp;Xu Wang ,&nbsp;Qiumei Huang ,&nbsp;Yang Hou ,&nbsp;Qinghua Zhang ,&nbsp;Xinxin Teng ,&nbsp;Jianguo Lu","doi":"10.1016/j.jelechem.2025.119182","DOIUrl":"10.1016/j.jelechem.2025.119182","url":null,"abstract":"<div><div>Cathode materials with excellent electrochemical performance play a crucial role in the large-scale development of sodium-ion batteries (SIBs). In this work we prepared O3-type Na(NiFeMn)<sub>1/3</sub>O<sub>2</sub> microspheres with a diameter of 5 μm and modified them with carbonized-tannic acid (CTA) coating. The carbon coated Na(NiFeMn)<sub>1/3</sub>O<sub>2</sub> microspheres designed as cathodes for SIBs have evidently improved performance, delivering an initial capacity of 108.6 mAh g<sup>−1</sup> at 150 mA g<sup>−1</sup> and a capacity retention of 73.5 % after 300 cycles. Importantly, under elevated temperature conditions (70 °C), the initial capacity of the modified cathode is 101.1 mAh g<sup>−1</sup>, with a capacity retention of 60.7 % after 300 cycles. This surface coating strategy provides a scalable pathway for developing durable, high-energy cathodes toward practical SIB applications in extreme environments.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"990 ","pages":"Article 119182"},"PeriodicalIF":4.1,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143923817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compounding CoSX onto lignin hard carbon realized multi-voltage plateau sodium storage 在木质素硬碳上复配CoSX,实现了多电压高原储钠
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-06 DOI: 10.1016/j.jelechem.2025.119178
Gengchen Li , Hai Huang , Zifeng Hua , Shijie Chen , Juan Yang , Xiaojuan Ma , Jiande Lin , Shilin Cao
{"title":"Compounding CoSX onto lignin hard carbon realized multi-voltage plateau sodium storage","authors":"Gengchen Li ,&nbsp;Hai Huang ,&nbsp;Zifeng Hua ,&nbsp;Shijie Chen ,&nbsp;Juan Yang ,&nbsp;Xiaojuan Ma ,&nbsp;Jiande Lin ,&nbsp;Shilin Cao","doi":"10.1016/j.jelechem.2025.119178","DOIUrl":"10.1016/j.jelechem.2025.119178","url":null,"abstract":"<div><div>Lignin, as the waste of the traditional pulp and paper industry, has the characteristics of low cost, high carbon content, and rich functional groups, showing great potential in hard carbon materials (HCs) applications. However, the limited voltage plateau region makes the lignin-derived hard carbon material (LC) with relatively low electrochemical performance. In this work, a heterostructured cobalt sulfide was introduced onto the LC (HCS) via hydrothermal treatment to develop sodium storage plateau in the high-voltage region due to the conversion reaction between CoS<sub>X</sub> and sodium. The results showed that the suitable coexistence of CoS and Co<sub>8</sub>S<sub>9</sub> was beneficial to boost the charge transfer kinetics and conductivity to promote the electrochemical performance of the HCS. The CoSx introduction developed a new high-voltage plateau at 1.6–1.7 V with a capacity up to 97.2 mAh·g<sup>−1</sup> at 50 mA·g<sup>−1</sup>, more importantly, the HCS displayed a superior specific capacity of 481.1 mAh·g<sup>−1</sup> at 50 mA·g<sup>−1</sup>, which is much higher than of LC (314 mAh·g<sup>−1</sup> at 50 mA·g<sup>−1</sup>).</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"990 ","pages":"Article 119178"},"PeriodicalIF":4.1,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143917993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing a core-shell structured hydroxide nanocatalyst based on dielectric barrier discharge microplasma etching for OER under alkaline condition 碱性条件下基于介质阻挡放电微等离子体刻蚀的核壳结构氢氧化物纳米催化剂的构建
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-06 DOI: 10.1016/j.jelechem.2025.119176
Haichuan Qin , Rui Dai , Pingyue Hu , Shuang Yan , Li Yang , Xiao Chen , Junxing Zhao , Yuanfang Deng , Chuan Lai , Zhipeng Wang
{"title":"Constructing a core-shell structured hydroxide nanocatalyst based on dielectric barrier discharge microplasma etching for OER under alkaline condition","authors":"Haichuan Qin ,&nbsp;Rui Dai ,&nbsp;Pingyue Hu ,&nbsp;Shuang Yan ,&nbsp;Li Yang ,&nbsp;Xiao Chen ,&nbsp;Junxing Zhao ,&nbsp;Yuanfang Deng ,&nbsp;Chuan Lai ,&nbsp;Zhipeng Wang","doi":"10.1016/j.jelechem.2025.119176","DOIUrl":"10.1016/j.jelechem.2025.119176","url":null,"abstract":"<div><div>Chemical etching method is of great significance in the field of catalyst preparation, as it can enhance catalytic performance. Therefore, it still exists a challenge to develop etching strategies to reduce time costs and improve synthesis efficiency, especially in exploiting high-performance and durable electrocatalysts. Herein, a strategy of dielectric barrier discharge (DBD) microplasma assisted etching has been proposed to prepare nickel hydroxide catalyst with core-shell structure (NC-Ni(OH)<sub>2</sub>) for OER. As prepared NC-Ni(OH)<sub>2</sub>/nickel foam (NF) represents superior OER activity, which demands only an overpotential of 226 mV to achieve 10 mA cm<sup>−2</sup>. Long-running durability (&gt;80 h) has also proven that NC-Ni(OH)<sub>2</sub>/NF has reliable stability, while the high turnover frequency (TOF) at 405 mV also reached 0.481 mol O<sub>2</sub> s<sup>−1</sup>. All above revealed that DBD microplasma assisted etching plays a positive role in improving catalyst capabilities to improve OER ability, which demonstrated that this strategy could be utilized to fabricate promising nanostructured materials in catalyst conversion.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"990 ","pages":"Article 119176"},"PeriodicalIF":4.1,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143923816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Mg2+ intercalation in MnO2/carbon composites via vanadium doping and oxygen vacancies for high-performance aqueous magnesium-ion batteries 通过钒掺杂和氧空位增强MnO2/碳复合材料中Mg2+的嵌入性,用于高性能水镁离子电池
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-06 DOI: 10.1016/j.jelechem.2025.119180
Shu Liu , Rui Zhang , Xiaoyang Deng , Ning Wang , Xingai Wang , Haichang Zhang , Yue Li , Fei Ding
{"title":"Enhancing Mg2+ intercalation in MnO2/carbon composites via vanadium doping and oxygen vacancies for high-performance aqueous magnesium-ion batteries","authors":"Shu Liu ,&nbsp;Rui Zhang ,&nbsp;Xiaoyang Deng ,&nbsp;Ning Wang ,&nbsp;Xingai Wang ,&nbsp;Haichang Zhang ,&nbsp;Yue Li ,&nbsp;Fei Ding","doi":"10.1016/j.jelechem.2025.119180","DOIUrl":"10.1016/j.jelechem.2025.119180","url":null,"abstract":"<div><div>MnO<sub>2</sub> is a promising cathode material for rechargeable aqueous magnesium ion batteries (AMIBs) due to its high specific capacity and high discharge voltage. However, MnO<sub>2</sub> suffers from structural instability and slow diffusion kinetics of Mg<sup>2+</sup>, which limit its cycle life and rate performance. In this study, a vanadium (V)-doped, oxygen vacancy (O<sub>vac</sub>)-rich birnessite-type MnO<sub>2</sub> loaded on a conductive three-dimensional (3D) carbon network composed of carbon nanotubes (CNTs) and reduced graphene oxide (rGO), referred to as V-O<sub>vac</sub>-MnO<sub>2</sub>/CG, was designed to enhance the kinetic of electrochemical reaction. For V-O<sub>vac</sub>-MnO<sub>2</sub>/CG, V doping and O<sub>vac</sub> greatly reduce the Mg<sup>2+</sup> insertion/extraction energy barrier, provide abundant active sites, and improve its electrical conductivity. As a result, the V-O<sub>vac</sub>-MnO<sub>2</sub>/CG cathode exhibits excellent electrochemical properties, achieving a specific capacity up to 398 mAh g<sup>−1</sup> at a current density of 0.1 A g<sup>−1</sup>. At the same time, it exhibits excellent rate capability, providing a capacity of 143 mAh g<sup>−1</sup> even at 2 A g<sup>−1</sup>. In addition, after 500 cycles at a current density of 0.2 A g<sup>−1</sup>, the capacity retention rate of V-O<sub>vac</sub>-MnO<sub>2</sub>/CG is still as high as 81 %. These properties make V-O<sub>vac</sub>-MnO<sub>2</sub>/CG a highly promising cathode material in the field of AMIBs.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"991 ","pages":"Article 119180"},"PeriodicalIF":4.1,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143947404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial Ohmic contact engineering in MoSe2/Ti3C2 Heterostructures for high-performance sodium-ion capacitors 高性能钠离子电容器中MoSe2/Ti3C2异质结构的界面欧姆接触工程
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-06 DOI: 10.1016/j.jelechem.2025.119181
Yuanhua Xiao , Gaozhan Yuan , Dangcheng Su , Yuanyuan Fan , Haoshuang Wang , Xutao Ge , Jun Zhou , Shaoming Fang , Xuezhao Wang
{"title":"Interfacial Ohmic contact engineering in MoSe2/Ti3C2 Heterostructures for high-performance sodium-ion capacitors","authors":"Yuanhua Xiao ,&nbsp;Gaozhan Yuan ,&nbsp;Dangcheng Su ,&nbsp;Yuanyuan Fan ,&nbsp;Haoshuang Wang ,&nbsp;Xutao Ge ,&nbsp;Jun Zhou ,&nbsp;Shaoming Fang ,&nbsp;Xuezhao Wang","doi":"10.1016/j.jelechem.2025.119181","DOIUrl":"10.1016/j.jelechem.2025.119181","url":null,"abstract":"<div><div>The development of sodium-ion capacitors (SICs) is hindered by the kinetic mismatch between sluggish ion diffusion in battery-type anodes and rapid surface reactions in capacitive cathodes. Herein, a MoSe<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> heterostructure with ohmic contact interfaces is synthesized via a facile solvothermal method, which simultaneously improve charge transfer kinetics and structural stability. Density functional theory (DFT) calculations reveal that the MoSe<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> interface reduces Na<sup>+</sup> diffusion energy barriers while providing efficient electron transport pathways. Notably, the MoSe<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub> heterostructure as a sodium-ion battery (SIB) anode delivers a high reversible capacity of 506.2 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and retains a capacity of 314.2 mAh g<sup>−1</sup> at 10.0 A g<sup>−1</sup>, demonstrating exceptional rate capability. When coupled with a commercial activated carbon (AC) cathode, the SIC device achieves energy densities of 101.3 Wh kg<sup>−1</sup> at 297.8 W kg<sup>−1</sup>, retaining 26.1 Wh kg<sup>−1</sup> even at 11.2 kW kg<sup>−1</sup>. Additionally, the device exhibits outstanding cycling stability with 97.5 % capacity retention after 5500 cycles. These results highlight the critical role of ohmic contact engineering in optimizing hybrid electrode design and provide a pathway for advancing high-performance SICs.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"990 ","pages":"Article 119181"},"PeriodicalIF":4.1,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143923818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High performance in water splitting(OER) mediated by porphyrin coupled with Polyoxometalates in COF: A breakthrough in electrocatalysis 卟啉偶联多金属氧酸盐在COF中的高效水分解(OER):电催化的一个突破
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-02 DOI: 10.1016/j.jelechem.2025.119172
Javeria Noreen , Mohammed A. Amin , Sonia Rani , Hameed Ullah , Zaki I. Zaki , Mohamed E. Khalifa , Muhammad Nadeem , Muhammad Sohail , Salman Khan , Zahoor Ahmad , Hafiz Muhammad Asif
{"title":"High performance in water splitting(OER) mediated by porphyrin coupled with Polyoxometalates in COF: A breakthrough in electrocatalysis","authors":"Javeria Noreen ,&nbsp;Mohammed A. Amin ,&nbsp;Sonia Rani ,&nbsp;Hameed Ullah ,&nbsp;Zaki I. Zaki ,&nbsp;Mohamed E. Khalifa ,&nbsp;Muhammad Nadeem ,&nbsp;Muhammad Sohail ,&nbsp;Salman Khan ,&nbsp;Zahoor Ahmad ,&nbsp;Hafiz Muhammad Asif","doi":"10.1016/j.jelechem.2025.119172","DOIUrl":"10.1016/j.jelechem.2025.119172","url":null,"abstract":"<div><div>The advancement of water–splitting technologies and renewable energy systems necessitates the development of robust and efficient electrocatalysts for the oxygen evolution reaction (OER). Covalent organic frameworks (COFs) based on metal-free porphyrins and polyoxometalates (POMs), demonstrate exceptional electrocatalytic performance for OER, offering a sustainable approach for efficient oxygen generation. In this study, an innovative COF (TTCMPP–POM) was synthesized by integrating TTCMPP and POM unites through straight forward condensation process. The hybrid material synergistically combines the catalytic and electronic properties of POM known for their stability and high OE activity, with the electron donating and redox flexible capabilities of porphyrins. Comprehensive spectroscopic and microscopic analyses confirmed the stability and structure of the TTCMPP–POM (COF). Electrochemical investigations revealed the superior OER performance of TTCMPP–POM (COF), which exhibited a lower overpotential (404 mV) at 10 mAcm<sup>−2</sup> compared to TTCMPP (415 mV), POM (503 mV), and RuO<sub>2</sub> (394 mV). Furthermore, TTCMPP–POM (COF) achieved an impressive Tafel slope of68.84 mVdec<sup>−1</sup>, out performing TTCMPP (88.45 mVdec<sup>−1</sup>), POM (142.18 mVdec<sup>−1</sup>), and RuO<sub>2</sub> (134.62 mVdec<sup>−1</sup>). Electrochemical impedance spectroscopy (EIS) and electroactive surface area (ECSA) analyses confirmed enhanced charge transfer properties of TTCMPP–POM (COF). These results establish TTCMPP–POM (COF) as a highly effective and modular electrocatalyst, paving the way for its applications in renewable energy technologies.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"990 ","pages":"Article 119172"},"PeriodicalIF":4.1,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure and catalytic performance for oxygen reduction reaction of worm-like CNTs with Fe3P and Fe0.8Mn0.2 alloy encapsulated Fe3P和Fe0.8Mn0.2合金包封的蠕虫状CNTs的结构和氧还原反应的催化性能
IF 4.1 3区 化学
Journal of Electroanalytical Chemistry Pub Date : 2025-05-02 DOI: 10.1016/j.jelechem.2025.119175
Xuanhao Zhang , Shanshan Wang , Zhanyu Ding , Haizhou Zhang , Xiaochun Ma , Xiaoming Zhou , Yu Ma , Yanlu Mu , Jiemei Yu , Taizhong Huang
{"title":"The structure and catalytic performance for oxygen reduction reaction of worm-like CNTs with Fe3P and Fe0.8Mn0.2 alloy encapsulated","authors":"Xuanhao Zhang ,&nbsp;Shanshan Wang ,&nbsp;Zhanyu Ding ,&nbsp;Haizhou Zhang ,&nbsp;Xiaochun Ma ,&nbsp;Xiaoming Zhou ,&nbsp;Yu Ma ,&nbsp;Yanlu Mu ,&nbsp;Jiemei Yu ,&nbsp;Taizhong Huang","doi":"10.1016/j.jelechem.2025.119175","DOIUrl":"10.1016/j.jelechem.2025.119175","url":null,"abstract":"<div><div>Developing transition metal-based catalysts is a feasible approach to decrease the cost of fuel cells. In this paper, we synthesized a worm-like carbon nanotubes (CNTs) encapsulated Fe<sub>3</sub>P and Fe<sub>0.8</sub>Mn<sub>0.2</sub> alloy based catalysts (FP/FM@CNTs) for oxygen reduction reaction (ORR) by calcination method. The precursor for the calcination was prepared by hydrothermal method. The CNTs encapsulation structure was confirmed by SEM, HRTEM, XRD, XPS and EDS tests. The electrocatalytic performances for ORR of the catalyst were examined in 0.1 M KOH electrolyte by using CV, LSV, Tafel, EIS, RDE and RRDE tests. The obtained results presented that the half-wave potential(E<sub><em>1/2</em></sub>) of FP/FM@CNTs catalyzed ORR was 0.892 V (vs. RHE), the maximum current intensity and the Tafel slope of FP/FM@CNTs catalyzed ORR were superior to that of the Pt/C catalyst. The density function theory calculation ascertained that the encapsulated Fe<sub>3</sub>P made the carbon atoms in surface layer CNT in negative electron state that could transfer electrons easily to oxygen molecular and promote the ORR happening. On the other hand, the CNTs encapsulation structure protected the Fe<sub>0.8</sub>Mn<sub>0.2</sub> alloy and Fe<sub>3</sub>P from the directly contact with electrolyte and other reactants, which assured the long-term operational stability of the catalysts. The content of this paper presents a novel approach for designing high-performance catalysts.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"990 ","pages":"Article 119175"},"PeriodicalIF":4.1,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信