{"title":"Multi-Mode Guided Waves Based Reference-Free Damage Diagnostic Imaging in Plates","authors":"Jiaqi Zhang, Kehai Liu, Chang Gao, Zhanjun Wu, Yuebin Zheng, D. Gao","doi":"10.32604/sdhm.2019.05142","DOIUrl":"https://doi.org/10.32604/sdhm.2019.05142","url":null,"abstract":"Probability-based diagnostic imaging (PDI) is one of the most well-known damage identification methods using guided waves. It is usually applied to diagnose damage in plates. The previous studies were dependent on the certain damage index (DI) which is always calculated from the guided wave signals. In conventional methods, DI is simply defined by comparing the real-time data with the baseline data as reference. However, the baseline signal is easily affected by varying environmental conditions of structures. In this paper, a reference-free diagnostic imaging method is developed to avoid the influence of environmental factors, such as temperature and load conditions. The DI is defined based on the mode conversion of multi-mode guided waves with realtime signals without baseline signals. To improve the accuracy of diagnosis, two terms are included in the reference-free DI. One is called energy DI, which is defined based on the feature of signal energy. The other is called correlation DI and is defined based on the correlation coefficient. Then the PDI algorithm can be carried out instantaneously according to the reference-free DI. The real-time signals which are used to calculate DI are collected by the piezoelectric lead zirconate titanate (PZT) transducers placed on both sides of a plate. The numerical simulations by the finite element (FE) method on aluminum plates with PZT arrays are performed to validate the effectiveness of the reference-free damage diagnostic imaging. The approach is validated by two different arrays: a circle network and a square network. The results of diagnostic imaging are demonstrated and discussed in this paper. Furthermore, the advantage of reference-free DI is investigated by comparing the accuracy of defined reference-free DI and energy DI.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69900287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinematic Analysis and Rock Mass Classifications for Rock Slope Failure at USAID Highways","authors":"I. Rusydy, N. Al-Huda, M. Fahmi, Naufal Effendi","doi":"10.32604/sdhm.2019.08192","DOIUrl":"https://doi.org/10.32604/sdhm.2019.08192","url":null,"abstract":"","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69900660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kundur Shantisagar, R. Jegadeeshwaran, G. Sakthivel, T. M. A. Manghai
{"title":"Vibration Based Tool Insert Health Monitoring Using Decision Tree and Fuzzy Logic","authors":"Kundur Shantisagar, R. Jegadeeshwaran, G. Sakthivel, T. M. A. Manghai","doi":"10.32604/sdhm.2019.00355","DOIUrl":"https://doi.org/10.32604/sdhm.2019.00355","url":null,"abstract":"The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools. This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach. A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe, where the condition of tool is monitored using vibration characteristics. The vibration signals for conditions such as heathy, damaged, thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system. The descriptive statistical features were extracted from the acquired vibration signal using the feature extraction techniques. The extracted statistical features were selected using a feature selection process through J48 decision tree algorithm. The selected features were classified using J48 decision tree and fuzzy to develop the fault diagnosis model for the improved predictive analysis. The decision tree model produced the classification accuracy as 94.78% with five selected features. The developed fuzzy model produced the classification accuracy as 94.02% with five membership functions. Hence, the decision tree has been proposed as a suitable fault diagnosis model for predicting the tool insert health condition under different fault conditions.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69899562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Zhao, M. Noori, Wael A. Altabey, Ramin Ghiasi, Zhishen Wu
{"title":"A Fatigue Damage Model for FRP Composite Laminate Systems Based on Stiffness Reduction","authors":"Ying Zhao, M. Noori, Wael A. Altabey, Ramin Ghiasi, Zhishen Wu","doi":"10.32604/SDHM.2019.04695","DOIUrl":"https://doi.org/10.32604/SDHM.2019.04695","url":null,"abstract":"This paper introduces a stiffness reduction based model developed by the authors to characterize accumulative fatigue damage in unidirectional plies and (0/θ/0) composite laminates in fiber reinforced polymer (FRP) composite laminates. The proposed damage detection model is developed based on a damage evolution mechanism, including crack initiation and crack damage progress in matrix, matrix-fiber interface and fibers. Research result demonstrates that the corresponding stiffness of unidirectional composite laminates is reduced as the number of loading cycles progresses. First, three common models in literatures are presented and compared. Tensile viscosity, Young’s modulus and ultimate tensile stress of composites are incorporated as key factors in this model and are modified in accordance with temperature. Four types of FRP composite property parameters, including Carbon Fiber Reinforced Polymer (CFRP), Aramid Fiber Reinforced Polymer (AFRP), Glass Fiber Reinforced Polymer (GFRP), and Basalt Fiber Reinforced Polymer (BFRP), are considered in this research, and a comparative parameter study of FRP unidirectional composite laminates with different off-angle plies using control variate method are discussed. It is concluded that the relationship between the drop in stiffness and the number of cycles also shows three different regions, following the mechanism of damage of FRP composites and the matrix is the dominant factor determined by temperature, while fiber strength is the dominant factor that determine the reliability of composite.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69900260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"System Identification of Heritage Structures through AVT and OMA: A Review","authors":"Vinay Shimpi, M. Sivasubramanian, S. B. Singh","doi":"10.32604/sdhm.2019.05951","DOIUrl":"https://doi.org/10.32604/sdhm.2019.05951","url":null,"abstract":"In this review article, the past investigations carried out on heritage structures using Ambient Vibration Test (AVT) and Operational Modal Analysis (OMA) for system identification (determination of dynamic properties like frequency, mode shape and damping ratios) and associated applications are summarized. A total of 68 major research studies on heritage structures around the world that are available in literature are surveyed for this purpose. At first, field investigations carried out on heritage structures prior to conducting AVT are explained in detail. Next, specifications of accelerometers, location of accelerometers and optimization of accelerometer networks have been elaborated with respect to the geometry of the heritage structures. In addition to this, ambient vibration loads and data acquisition procedures are also discussed. Further, the state of art of performing OMA techniques for heritage structures is explained briefly. Furthermore, various applications of system identification for heritage structures are documented. Finally, conclusions are made towards errorless system identification of heritage structures through AVT and OMA.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69900454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seismic Vulnerability Analysis of Single-Story Reinforced Concrete Industrial Buildings with Seismic Fortification","authors":"Jieping Liu, Lingxin Zhang, Haohao Zhang, Tao Liu","doi":"10.32604/sdhm.2019.04486","DOIUrl":"https://doi.org/10.32604/sdhm.2019.04486","url":null,"abstract":"As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China, seismic vulnerability analysis was performed by numerical simulation in this paper. The earthquake-structure analysis model was developed with considering the influence of uncertainties of the ground motion and structural model parameters. The small-size sampling was conducted based on the Latin hypercube sampling and orthogonal design methods. Using nonlinear analysis, the seismic vulnerability curves and damage probability matrix with various seismic fortification intensities (SFI) were obtained. The seismic capacity of the factory building was then evaluated. The results showed that, with different designs at different SFIs, the factory building could consistently achieve the three seismic fortification objectives. For the studied factory buildings with the SFI of 6, they satisfied the seismic fortification requirements of “no damage in moderate earthquakes, mendable in strong earthquakes”; for those buildings with SFIs of 7 and 8, the requirement of “no collapsing in super strong earthquakes” was generally met; while for those with SFIs of 9, the requirement of “mendable in moderate earthquakes” was almost satisfied. The results showed factory buildings designed with low SFIs are better at achieving the seismic fortification objectives than those designed with high SFIs.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69899685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fiber Grating-Based Strain Sensor Array for Health Monitoring of Pipelines","authors":"Hui Wang, Songyou Li, L. Liang, Gang Xu, Bin Tu","doi":"10.32604/sdhm.2019.05139","DOIUrl":"https://doi.org/10.32604/sdhm.2019.05139","url":null,"abstract":": Pipelines are one of the most important modern energy transportation methods, used especially for the transportation of certain dangerous energy media materials such as crude oil, natural gas, and chemical raw materials. New requirements have been put forward for the health monitoring and early security warning of pipelines because of the large-scale and complicated development trend of the pipe network system. To achieve an accurate assessment of the health conditions of pipeline infrastructure, obtaining as many precise operating parameters as possible, particularly at some critical parts of the pipeline, is necessary. Therefore, a novel type of fi ber grating strain sensor array is proposed herein to monitor the pipeline hoop strain. The sensor utilizes fi ber grating characteristics such as light weight, corrosion resistance, remote transmission, and strong environmental adaptability. The fi ber containing the grating measurement points is implanted into the composite material to complete the sensitization encapsulation and protection of the bare fi ber grating. The design of the sensor array ful fi lls the requirements for monitoring pipeline mass data, making it easy to form a pipeline health monitoring sensor network. The sensor sensitivity is researched by using a com-bination of theoretical and experimental analysis. A sensitivity test, as well as linearity and stability tests, are performed on the sensor. The experimental results show that the average sensitivity of the sensor is 14.86 pm /µ ε , and the error from the theoretical calculation analysis value is 8.75%. Due to its high reliability, good linear response and long-term stability, and the ability to re fl ect the exact strain change of the outer wall of the pipeline, the designed sensor can support long-term online pipeline monitoring. The fi ber grating sensor array network has successfully realized the monitoring of the pipeline ’ s internal operation by using external strain changes. In addition to the performance bene fi ts, there are other merits associated with the applicability of the sensor namely simple structure, compact size, manufacturing ease, and exterior installation ease.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69900279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical Behaviors and Deformation Properties of Retaining Wall Formed by Grouting Mould-Bag Pile","authors":"Shengcai Li, Jun Tang, Lin Guo","doi":"10.32604/sdhm.2019.06058","DOIUrl":"https://doi.org/10.32604/sdhm.2019.06058","url":null,"abstract":"The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring, surface horizontal displacement and vertical displacement monitoring, deep horizontal displacement (inclinometer) monitoring, soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi, Fujian Province. The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared. The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement, so that it can rock into a retaining wall, which can both retain soil and seal water with excellent effect. The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile, but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction; and its cohesion and internal friction angle increased, so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69900524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Wu, Kui Hu, Yiwei Cheng, Ji Wang, C. Deng, Yuanhang Wang
{"title":"Ensemble Recurrent Neural Network-Based Residual Useful Life Prognostics of Aircraft Engines","authors":"Jun Wu, Kui Hu, Yiwei Cheng, Ji Wang, C. Deng, Yuanhang Wang","doi":"10.32604/sdhm.2019.05571","DOIUrl":"https://doi.org/10.32604/sdhm.2019.05571","url":null,"abstract":"","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69900738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Load Test and Fatigue Life Evaluation for Welded Details in Taizhou Yangtze River Bridge","authors":"M. Zhuang, C. Miao, R. Chen","doi":"10.32604/sdhm.2019.04654","DOIUrl":"https://doi.org/10.32604/sdhm.2019.04654","url":null,"abstract":"To study the fatigue performance of welded details in the orthotropic steel decks, the steel box girder for Taizhou Yangtze River Bridge is taken as the research object. Based on the field monitoring data obtained from the load test, the stress response test of the orthotropic steel box girder under wheel loads is performed and the correctness of the vehicle test data obtained from the field monitoring data also have been verified by the numerical results of the finite element model. Based on the Miner linear cumulative damage theory, the S-N curve of the Eurocode3 specification is referenced, and the fatigue life calculation formula of the welded details is determined according to the actual structural features. The fatigue life evaluation of the four typical welded details is obtained. The results indicate that: The load test data is compared and verified by the numerical result of finite element model. The local effect of stress distribution is remarkable. The stress measurement points on the four typical welded details are mainly based on low amplitude stress cycles. Most of the stress ranges are 2-10 MPa, among which the stress range of the welded details at the U-rib butt joint is larger. The fatigue life of welded details in the 14 mm thick top plate is smaller than that of the 16 mm thick top plate corresponding to the fatigue life of the welded details. The rib-to-rib butt welded joints and the openings of the diaphragms were prone to fatigue failure. Among them, the welding details of the 14 mm thick U-rib butt joints first appeared fatigue failure. The arrangement of the diaphragm can effectively increase the fatigue life of the top-U rib weld and improve the fatigue performance at this detail.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69899851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}