台州长江大桥焊接细部荷载试验及疲劳寿命评价

Q2 Engineering
M. Zhuang, C. Miao, R. Chen
{"title":"台州长江大桥焊接细部荷载试验及疲劳寿命评价","authors":"M. Zhuang, C. Miao, R. Chen","doi":"10.32604/sdhm.2019.04654","DOIUrl":null,"url":null,"abstract":"To study the fatigue performance of welded details in the orthotropic steel decks, the steel box girder for Taizhou Yangtze River Bridge is taken as the research object. Based on the field monitoring data obtained from the load test, the stress response test of the orthotropic steel box girder under wheel loads is performed and the correctness of the vehicle test data obtained from the field monitoring data also have been verified by the numerical results of the finite element model. Based on the Miner linear cumulative damage theory, the S-N curve of the Eurocode3 specification is referenced, and the fatigue life calculation formula of the welded details is determined according to the actual structural features. The fatigue life evaluation of the four typical welded details is obtained. The results indicate that: The load test data is compared and verified by the numerical result of finite element model. The local effect of stress distribution is remarkable. The stress measurement points on the four typical welded details are mainly based on low amplitude stress cycles. Most of the stress ranges are 2-10 MPa, among which the stress range of the welded details at the U-rib butt joint is larger. The fatigue life of welded details in the 14 mm thick top plate is smaller than that of the 16 mm thick top plate corresponding to the fatigue life of the welded details. The rib-to-rib butt welded joints and the openings of the diaphragms were prone to fatigue failure. Among them, the welding details of the 14 mm thick U-rib butt joints first appeared fatigue failure. The arrangement of the diaphragm can effectively increase the fatigue life of the top-U rib weld and improve the fatigue performance at this detail.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load Test and Fatigue Life Evaluation for Welded Details in Taizhou Yangtze River Bridge\",\"authors\":\"M. Zhuang, C. Miao, R. Chen\",\"doi\":\"10.32604/sdhm.2019.04654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the fatigue performance of welded details in the orthotropic steel decks, the steel box girder for Taizhou Yangtze River Bridge is taken as the research object. Based on the field monitoring data obtained from the load test, the stress response test of the orthotropic steel box girder under wheel loads is performed and the correctness of the vehicle test data obtained from the field monitoring data also have been verified by the numerical results of the finite element model. Based on the Miner linear cumulative damage theory, the S-N curve of the Eurocode3 specification is referenced, and the fatigue life calculation formula of the welded details is determined according to the actual structural features. The fatigue life evaluation of the four typical welded details is obtained. The results indicate that: The load test data is compared and verified by the numerical result of finite element model. The local effect of stress distribution is remarkable. The stress measurement points on the four typical welded details are mainly based on low amplitude stress cycles. Most of the stress ranges are 2-10 MPa, among which the stress range of the welded details at the U-rib butt joint is larger. The fatigue life of welded details in the 14 mm thick top plate is smaller than that of the 16 mm thick top plate corresponding to the fatigue life of the welded details. The rib-to-rib butt welded joints and the openings of the diaphragms were prone to fatigue failure. Among them, the welding details of the 14 mm thick U-rib butt joints first appeared fatigue failure. The arrangement of the diaphragm can effectively increase the fatigue life of the top-U rib weld and improve the fatigue performance at this detail.\",\"PeriodicalId\":35399,\"journal\":{\"name\":\"SDHM Structural Durability and Health Monitoring\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SDHM Structural Durability and Health Monitoring\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/sdhm.2019.04654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SDHM Structural Durability and Health Monitoring","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/sdhm.2019.04654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为研究正交异性钢桥面焊接细部的疲劳性能,以泰州长江大桥钢箱梁为研究对象。在荷载试验现场监测数据的基础上,进行了轮载作用下正交异性钢箱梁的应力响应试验,并通过有限元模型的数值结果验证了现场监测数据得到的整车试验数据的正确性。在Miner线性累积损伤理论的基础上,参考了欧洲规范3的S-N曲线,根据实际结构特点确定了焊接细部的疲劳寿命计算公式。得到了4种典型焊接细部的疲劳寿命评价。结果表明:荷载试验数据与有限元模型的数值结果进行了比较和验证。应力分布的局部效应显著。四个典型焊接细部的应力测点主要基于低幅应力循环。应力范围大都在2 ~ 10 MPa之间,其中u型肋对接处的焊接细部应力范围较大。14mm厚顶板中焊接细部的疲劳寿命小于对应于焊接细部疲劳寿命的16mm厚顶板。肋对肋对接焊接接头和隔板开口容易发生疲劳破坏。其中,14mm厚u型肋对接接头的焊接细节首先出现疲劳破坏。膜片的布置可以有效提高u形肋焊缝的疲劳寿命,改善该部位的疲劳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load Test and Fatigue Life Evaluation for Welded Details in Taizhou Yangtze River Bridge
To study the fatigue performance of welded details in the orthotropic steel decks, the steel box girder for Taizhou Yangtze River Bridge is taken as the research object. Based on the field monitoring data obtained from the load test, the stress response test of the orthotropic steel box girder under wheel loads is performed and the correctness of the vehicle test data obtained from the field monitoring data also have been verified by the numerical results of the finite element model. Based on the Miner linear cumulative damage theory, the S-N curve of the Eurocode3 specification is referenced, and the fatigue life calculation formula of the welded details is determined according to the actual structural features. The fatigue life evaluation of the four typical welded details is obtained. The results indicate that: The load test data is compared and verified by the numerical result of finite element model. The local effect of stress distribution is remarkable. The stress measurement points on the four typical welded details are mainly based on low amplitude stress cycles. Most of the stress ranges are 2-10 MPa, among which the stress range of the welded details at the U-rib butt joint is larger. The fatigue life of welded details in the 14 mm thick top plate is smaller than that of the 16 mm thick top plate corresponding to the fatigue life of the welded details. The rib-to-rib butt welded joints and the openings of the diaphragms were prone to fatigue failure. Among them, the welding details of the 14 mm thick U-rib butt joints first appeared fatigue failure. The arrangement of the diaphragm can effectively increase the fatigue life of the top-U rib weld and improve the fatigue performance at this detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SDHM Structural Durability and Health Monitoring
SDHM Structural Durability and Health Monitoring Engineering-Building and Construction
CiteScore
2.40
自引率
0.00%
发文量
29
期刊介绍: In order to maintain a reasonable cost for large scale structures such as airframes, offshore structures, nuclear plants etc., it is generally accepted that improved methods for structural integrity and durability assessment are required. Structural Health Monitoring (SHM) had emerged as an active area of research for fatigue life and damage accumulation prognostics. This is important for design and maintains of new and ageing structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信