带抗震设防的单层钢筋混凝土工业建筑地震易损性分析

Q2 Engineering
Jieping Liu, Lingxin Zhang, Haohao Zhang, Tao Liu
{"title":"带抗震设防的单层钢筋混凝土工业建筑地震易损性分析","authors":"Jieping Liu, Lingxin Zhang, Haohao Zhang, Tao Liu","doi":"10.32604/sdhm.2019.04486","DOIUrl":null,"url":null,"abstract":"As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China, seismic vulnerability analysis was performed by numerical simulation in this paper. The earthquake-structure analysis model was developed with considering the influence of uncertainties of the ground motion and structural model parameters. The small-size sampling was conducted based on the Latin hypercube sampling and orthogonal design methods. Using nonlinear analysis, the seismic vulnerability curves and damage probability matrix with various seismic fortification intensities (SFI) were obtained. The seismic capacity of the factory building was then evaluated. The results showed that, with different designs at different SFIs, the factory building could consistently achieve the three seismic fortification objectives. For the studied factory buildings with the SFI of 6, they satisfied the seismic fortification requirements of “no damage in moderate earthquakes, mendable in strong earthquakes”; for those buildings with SFIs of 7 and 8, the requirement of “no collapsing in super strong earthquakes” was generally met; while for those with SFIs of 9, the requirement of “mendable in moderate earthquakes” was almost satisfied. The results showed factory buildings designed with low SFIs are better at achieving the seismic fortification objectives than those designed with high SFIs.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Seismic Vulnerability Analysis of Single-Story Reinforced Concrete Industrial Buildings with Seismic Fortification\",\"authors\":\"Jieping Liu, Lingxin Zhang, Haohao Zhang, Tao Liu\",\"doi\":\"10.32604/sdhm.2019.04486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China, seismic vulnerability analysis was performed by numerical simulation in this paper. The earthquake-structure analysis model was developed with considering the influence of uncertainties of the ground motion and structural model parameters. The small-size sampling was conducted based on the Latin hypercube sampling and orthogonal design methods. Using nonlinear analysis, the seismic vulnerability curves and damage probability matrix with various seismic fortification intensities (SFI) were obtained. The seismic capacity of the factory building was then evaluated. The results showed that, with different designs at different SFIs, the factory building could consistently achieve the three seismic fortification objectives. For the studied factory buildings with the SFI of 6, they satisfied the seismic fortification requirements of “no damage in moderate earthquakes, mendable in strong earthquakes”; for those buildings with SFIs of 7 and 8, the requirement of “no collapsing in super strong earthquakes” was generally met; while for those with SFIs of 9, the requirement of “mendable in moderate earthquakes” was almost satisfied. The results showed factory buildings designed with low SFIs are better at achieving the seismic fortification objectives than those designed with high SFIs.\",\"PeriodicalId\":35399,\"journal\":{\"name\":\"SDHM Structural Durability and Health Monitoring\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SDHM Structural Durability and Health Monitoring\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/sdhm.2019.04486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SDHM Structural Durability and Health Monitoring","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/sdhm.2019.04486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

由于国内缺乏设防工事厂房地震震害数据,本文采用数值模拟的方法进行地震易损性分析。建立了考虑地震动不确定性和结构模型参数影响的地震-结构分析模型。采用拉丁超立方抽样法和正交设计法进行小样本抽样。采用非线性分析方法,得到了不同设防烈度下的地震易损性曲线和损伤概率矩阵。然后对厂房的抗震能力进行了评估。结果表明,厂房在不同的抗震设防点进行不同的设计,均能一致地达到3个抗震设防目标。对SFI为6的厂房,满足“中震不破坏,强震可修复”的抗震设防要求;sf值为7和8的建筑物,基本满足“超强地震不倒塌”的要求;而sf指数为9的,则基本满足“可在中地震中修复”的要求。结果表明:采用低抗震设防系数设计的厂房比采用高抗震设防系数设计的厂房更能达到抗震设防目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic Vulnerability Analysis of Single-Story Reinforced Concrete Industrial Buildings with Seismic Fortification
As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China, seismic vulnerability analysis was performed by numerical simulation in this paper. The earthquake-structure analysis model was developed with considering the influence of uncertainties of the ground motion and structural model parameters. The small-size sampling was conducted based on the Latin hypercube sampling and orthogonal design methods. Using nonlinear analysis, the seismic vulnerability curves and damage probability matrix with various seismic fortification intensities (SFI) were obtained. The seismic capacity of the factory building was then evaluated. The results showed that, with different designs at different SFIs, the factory building could consistently achieve the three seismic fortification objectives. For the studied factory buildings with the SFI of 6, they satisfied the seismic fortification requirements of “no damage in moderate earthquakes, mendable in strong earthquakes”; for those buildings with SFIs of 7 and 8, the requirement of “no collapsing in super strong earthquakes” was generally met; while for those with SFIs of 9, the requirement of “mendable in moderate earthquakes” was almost satisfied. The results showed factory buildings designed with low SFIs are better at achieving the seismic fortification objectives than those designed with high SFIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SDHM Structural Durability and Health Monitoring
SDHM Structural Durability and Health Monitoring Engineering-Building and Construction
CiteScore
2.40
自引率
0.00%
发文量
29
期刊介绍: In order to maintain a reasonable cost for large scale structures such as airframes, offshore structures, nuclear plants etc., it is generally accepted that improved methods for structural integrity and durability assessment are required. Structural Health Monitoring (SHM) had emerged as an active area of research for fatigue life and damage accumulation prognostics. This is important for design and maintains of new and ageing structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信