Stapp car crash journal最新文献

筛选
英文 中文
Understanding Head Injury Risks During Car-to-Pedestrian Collisions Using Realistic Vehicle and Detailed Human Body Models. 使用真实的车辆和详细的人体模型了解汽车与行人碰撞过程中的头部伤害风险。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0006
Kalish Gunasekaran, Sakib Ul Islam, Haojie Mao
{"title":"Understanding Head Injury Risks During Car-to-Pedestrian Collisions Using Realistic Vehicle and Detailed Human Body Models.","authors":"Kalish Gunasekaran,&nbsp;Sakib Ul Islam,&nbsp;Haojie Mao","doi":"10.4271/2022-22-0006","DOIUrl":"10.4271/2022-22-0006","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is the leading cause of death and long-term disability in road traffic accidents (RTAs). Researchers have examined the effect of vehicle front shape and pedestrian body size on the risk of pedestrian head injury. On the other hand, the relationship between vehicle front shape parameters and pedestrian TBI risks involving a diverse population with varying body sizes has yet to be investigated. Thus, the purpose of this study was to comprehensively study the effect of vehicle front shape parameters and various pedestrian bodies ranging from 95th percentile male (AM95) to 6 years old (YO) child on the dynamic response of the head and the risk of TBIs during primary (vehicle) impact. At three different collision speeds (30, 40, and 50 km/h), a total of 36 car-to-pedestrian collisions (CPCs) were reconstructed using three different vehicle types (Subcompact passenger sedan, mid-sedan, and sports utility vehicle (SUV)) and four distinct THUMS pedestrian finite element (FE) models (AM50, AM95, AF05, and 6YO). We assessed skull stress and brain strains besides head linear and rotational kinematics. Our findings indicate that vehicle shape parameters especially bonnet leading edge height (BLEH), when being divided by the height of the Center of Gravity of the human body, correlated positively to head kinematics. The data from this study using realistic vehicle structures and detailed human body models showed that smaller BLEH/CG ratios reduced head injury criteria (HIC) and brain injury criteria (BrIC) values for the car center to mid-stance walking pedestrian impacts but with low-to-moderate R squared values between 0.2 to 0.5. Smaller BLEH/CG reduced head lateral bending velocities with R squared values of 0.57 to 0.63 for all impact velocities, and reduced HIC with R squared value of 0.62 for 50 km/h cases. In the future, simulations with realistic car structures and detailed human body models will be further used to simulate impacts at different locations and with various body shapes/postures.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"175-205"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41158181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obese Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts. 正面碰撞中倾斜和直立姿势下肥胖乘客的反应。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0002
Karthik Somasundaram, John R Humm, Narayan Yoganandan, Hans Hauschild, Klaus Driesslein, Frank A Pintar
{"title":"Obese Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts.","authors":"Karthik Somasundaram,&nbsp;John R Humm,&nbsp;Narayan Yoganandan,&nbsp;Hans Hauschild,&nbsp;Klaus Driesslein,&nbsp;Frank A Pintar","doi":"10.4271/2022-22-0002","DOIUrl":"https://doi.org/10.4271/2022-22-0002","url":null,"abstract":"<p><p>The American population is getting heavier and automated vehicles will accommodate unconventional postures. While studies replicating mid-size and upright fore-aft seated occupants are numerous, experiments with post-mortem human subjects (PMHS) with obese and reclined occupants are sparse. The objective of this study was to compare the kinematics of the head-neck, torso and pelvis, and document injuries and injury patterns in frontal impacts. Six PMHS with a mean body mass index of 38.2 ± 5.3 kg/m2 were equally divided between upright and reclined groups (seatback: 23°, 45°), restrained by a three-point integrated belt, positioned on a semi-rigid seat, and exposed to low and moderate velocities (15, 32 km/h). Data included belt loads, spinal accelerations, kinematics, and injuries from x-rays, computed tomography, and necropsy. At 15 km/h speed, no significant difference in the occupant kinematics and evidence of orthopedic failure was observed. At 32 km/h speed, the primary difference between the cohorts was significantly larger Z displacements in the reclined occupant at the head (190 ± 32 mm, vs. 105 ± 33 mm p < 0.05) and femur (52 ± 18 mm vs. 30 ± 10 mm, p < 0.05). All the moderate-speed tests produced at least one thorax injury. Rib fractures were scattered around the circumference of the rib-cage in the upright, while they were primarily concentrated on the anterior aspect of the rib-cage in two reclined specimens. Although MAIS was the same in both groups, the reclined specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. While not statistical, these results suggest enhanced injuries with reclined obese occupants. These results could serve as a data set for validating the response of restrained obese anthropometric test device (ATDs) and computational human body models.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"31-68"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41131425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
THOR-05F Response in Sled Tests Inducing Submarining and Comparison with PMHS Response Corridors. THOR-05F在诱导潜水的雪橇试验中的反应以及与PMHS反应通道的比较。
Stapp car crash journal Pub Date : 2021-11-01 DOI: 10.4271/2021-22-0005
Olivier Richard, M. Lebarbé, J. Uriot, X. Trosseille, P. Petit, Z. J. Wang, Ellen Lee
{"title":"THOR-05F Response in Sled Tests Inducing Submarining and Comparison with PMHS Response Corridors.","authors":"Olivier Richard, M. Lebarbé, J. Uriot, X. Trosseille, P. Petit, Z. J. Wang, Ellen Lee","doi":"10.4271/2021-22-0005","DOIUrl":"https://doi.org/10.4271/2021-22-0005","url":null,"abstract":"The Test Device for Human Occupant Restraint (THOR) is an advanced crash test dummy designed for frontal impact. Originally released in a 50th percentile male version (THOR-50M), a female 5th version (THOR-05F) was prototyped in 2017 (Wang et al., 2017) and compared with biofidelity sub-system tests (Wang et al., 2018). The same year, Trosseille et al. (2018) published response corridors using nine 5th percentile female Post Mortem Human Subjects (PMHS) tested in three sled configurations, including both submarining and non-submarining cases. The goal of this paper is to provide an initial evaluation of the THOR-05F biofidelity in a full-scale sled test, by comparing its response with the PMHS corridors published by Trosseille et al. (2018). Significant similarities between PMHS and THOR-05F were observed: as in Trosseille et al. (2018), the THOR-05F did not submarine in configuration 1, and submarined in configurations 2 and 3. The lap belt tension and seat forces were similar in magnitude. For configurations 2 and 3, the pelvis excursions were of the same order of magnitude between both human surrogates. However, significant differences were also observed: compared to the PMHS, the THOR-05F showed shoulder belt forces that were 1.6 to 2.1 times higher in magnitude, and lap belt force time histories that were delayed by 10 to 20 ms. In configuration 1, the chest and pelvis resultant accelerations of the dummy were delayed as well, and the pelvis excursion and rotation more than doubled that of the PMHS.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"65 1","pages":"91-138"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49353241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the Effect of Pelvis Fracture on Lumbar Spine Compression during High-rate Vertical Loading. 量化骨盆骨折对高速垂直加载过程中腰椎压缩的影响。
Stapp car crash journal Pub Date : 2021-11-01 DOI: 10.4271/2021-22-0008
D. Barnes, N. Yoganandan, Jason Moore, J. Humm, F. Pintar, K. Loftis
{"title":"Quantifying the Effect of Pelvis Fracture on Lumbar Spine Compression during High-rate Vertical Loading.","authors":"D. Barnes, N. Yoganandan, Jason Moore, J. Humm, F. Pintar, K. Loftis","doi":"10.4271/2021-22-0008","DOIUrl":"https://doi.org/10.4271/2021-22-0008","url":null,"abstract":"Fracture to the lumbo-pelvis region is prevalent in warfighters seated in military vehicles exposed to under-body blast (UBB). Previous high-rate vertical loading experimentation using whole body post-mortem human surrogates (PMHS) indicated that pelvis fracture tends to occur earlier in events and under higher magnitude seat input conditions compared to lumbar spine fracture. The current study hypothesizes that fracture of the pelvis under high-rate vertical loading reduces load transfer to the lumbar spine, thus reducing the potential for spine fracture. PMHS lumbo-pelvis components (L4-pelvis) were tested under high-rate vertical loading and force and acceleration metrics were measured both inferior-to and superior-to the specimen. The ratio of inferior-tosuperior responses was significantly reduced by unstable pelvis fracture for all metrics and a trend of reduced ratio was observed with increased pelvis AIS severity. This study has established that pelvis fracture reduces compression forces at the lumbar spine during high-rate vertical loading, thus reducing the potential for fracture to the lumbar spine. Therefore, pelvis injury potential should be considered when implementing lumbar injury criteria specific to UBB.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"65 1","pages":"189-216"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43560080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instantaneous Brain Strain Estimation for Automotive Head Impacts via Deep Learning. 基于深度学习的汽车头部撞击瞬时脑损伤估计。
Stapp car crash journal Pub Date : 2021-11-01 DOI: 10.4271/2021-22-0006
Shaoju Wu, Wei Zhao, S. Barbat, J. Ruan, Songbai Ji
{"title":"Instantaneous Brain Strain Estimation for Automotive Head Impacts via Deep Learning.","authors":"Shaoju Wu, Wei Zhao, S. Barbat, J. Ruan, Songbai Ji","doi":"10.4271/2021-22-0006","DOIUrl":"https://doi.org/10.4271/2021-22-0006","url":null,"abstract":"Efficient brain strain estimation is critical for routine application of a head injury model. Lately, a convolutional neural network (CNN) has been successfully developed to estimate spatially detailed brain strains instantly and accurately in contact sports. Here, we extend its application to automotive head impacts, where impact profiles are typically more complex with longer durations. Head impact kinematics (N=458) from two public databases were used to generate augmented impacts (N=2694). They were simulated using the anisotropic Worcester Head Injury Model (WHIM) V1.0, which provided baseline elementwise peak maximum principal strain (MPS). For each augmented impact, rotational velocity (vrot) and the corresponding rotational acceleration (arot) profiles were concatenated as static images to serve as CNN input. Three training strategies were evaluated: 1) \"baseline\", using random initial weights; 2) \"transfer learning\", using weight transfer from a previous CNN model trained on head impacts drawn from contact sports; and 3) \"combined training\", combining previous training data from contact sports (N=5661) for training. The combined training achieved the best performances. For peak MPS, the CNN achieved a coefficient of determination (R2) of 0.932 and root mean squared error (RMSE) of 0.031 for the real-world testing dataset. It also achieved a success rate of 60.5% and 94.8% for elementwise MPS, where the linear regression slope, k, and correlation coefficient, r, between estimated and simulated MPS did not deviate from 1.0 (when identical) by more than 0.1 and 0.2, respectively. Cumulative strain damage measure (CSDM) from the CNN estimation was also highly accurate compared to those from direct simulation across a range of thresholds (R2 of 0.899-0.943 with RMSE of 0.054-0.069). Finally, the CNN achieved an average k and r of 0.98±0.12 and 0.90±0.07, respectively, for six reconstructed car crash impacts drawn from two other sources independent of the training dataset. Importantly, the CNN is able to efficiently estimate elementwise MPS with sufficient accuracy while conventional kinematic injury metrics cannot. Therefore, the CNN has the potential to supersede current kinematic injury metrics that can only approximate a global peak MPS or CSDM. The CNN technique developed here may offer enhanced utility in the design and development of head protective countermeasures, including in the automotive industry. This is the first study aimed at instantly estimating spatially detailed brain strains for automotive head impacts, which employs >8.8 thousand impact simulations generated from ~1.5 years of nonstop computations on a high-performance computing platform.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"65 1","pages":"139-162"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47352355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analysis of Lap Belt Fit to Human Subjects using CT Images. 基于CT图像的人体腰带贴合分析。
Stapp car crash journal Pub Date : 2021-11-01 DOI: 10.4271/2021-22-0004
Yoshihiko Tanaka, Atsushi Nakashima, Haijie Feng, K. Mizuno, M. Yamada, Yoshitake Yamada, Yoichi Yokoyama, Masahito Jinzaki
{"title":"Analysis of Lap Belt Fit to Human Subjects using CT Images.","authors":"Yoshihiko Tanaka, Atsushi Nakashima, Haijie Feng, K. Mizuno, M. Yamada, Yoshitake Yamada, Yoichi Yokoyama, Masahito Jinzaki","doi":"10.4271/2021-22-0004","DOIUrl":"https://doi.org/10.4271/2021-22-0004","url":null,"abstract":"In vehicle collisions, the lap belt should engage the anterior superior iliac spine (ASIS). In this study, threedimensional (3D) shapes of bones and soft tissues around the pelvis were acquired using a computed tomography (CT) scan of 10 male and 10 female participants wearing a lap belt. Standing, upright sitting, and reclined postures were scanned using an upright CT and a supine CT scan system. In the upright sitting posture, the thigh height was larger with a higher BMI while the ASIS height did not change significantly with BMI. As a result, the height of the ASIS relative to the thigh (ASIS-thigh height) became smaller as the BMI increased. Because the thigh height of females was smaller than that of males, the ASIS-thigh height was larger for females than for males. As the ASIS-thigh height was larger, the overlap of the lap belt with the ASIS increased. Thus, the lap belt overlapped more with the ASIS for the females than for the males. The abdomen outer shape is characterized by the trouser cord formed valley, the torso/thigh junction, and the anterior convexity formed between them depending on the adipose tissues. The abdomen outer shapes changed from the standing, the reclined posture to the upright sitting posture. In the reclined sitting posture, the lap belt is positioned upward and rearward relative to the ASIS, and the overlap of the lap belt with the ASIS was smaller compared to the upright posture.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"65 1","pages":"49-90"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43728389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Self-reported Non-nominal Sitting in Passengers is Influenced by Age and Height. 自我报告的非名义坐客受年龄和身高的影响。
Stapp car crash journal Pub Date : 2021-11-01 DOI: 10.4271/2021-22-0003
A. Goodworth, J. Canada
{"title":"Self-reported Non-nominal Sitting in Passengers is Influenced by Age and Height.","authors":"A. Goodworth, J. Canada","doi":"10.4271/2021-22-0003","DOIUrl":"https://doi.org/10.4271/2021-22-0003","url":null,"abstract":"Automotive safety devices, such as airbags and seatbelts, are generally designed for optimal performance when occupants adopt a \"nominal\" upright anatomical sitting position. While a driver's sitting behavior is largely influenced by the requirements of driving, a passenger may adopt any number of non-nominal positions and behaviors. Very few studies have investigated the behaviors that teen and adult passengers actually adopt. The present study investigates self-reported nonnominal sitting in passengers and quantifies the influence of age and anthropometrics on these behaviors. A better understanding of passenger behavior is a timely research topic because advanced sensors may eventually allow better detection of non-nominal sitting and the advent of autonomous vehicles increases the number of passengers and seating options. Ten online survey questions were created to assess how frequently non-nominal sitting was adopted. Results were obtained from 561 anonymous participants, ranging in age from 14 to 83 years old. Analyses included 1) averages for each question, 2) a statistical linear mixed model to test for the influence of age and height on responses, and 3) correlations between all questions. Statistical significance was set at p<0.05. In summary, there was a sizable percentage of participants who self-reported behaviors or sitting positions that potentially increase risk of injury. Younger subjects were significantly more likely to adopt non-nominal sitting. Shorter subjects adopted non-nominal foot position more often, while taller subjects' knees were significantly closer to the dash. Participants opted not to wear their seat belt in the rear seat more than the front seat.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"65 1","pages":"29-48"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43893969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lives Saved by Accelerating the Implementation of Vehicle Safety Technology in New South Wales. 新南威尔士州加速实施车辆安全技术拯救生命。
Stapp car crash journal Pub Date : 2021-11-01 DOI: 10.4271/2021-22-0001
J. Strandroth, R. Fernandes, Greer Banyer, A. Cavallo
{"title":"Lives Saved by Accelerating the Implementation of Vehicle Safety Technology in New South Wales.","authors":"J. Strandroth, R. Fernandes, Greer Banyer, A. Cavallo","doi":"10.4271/2021-22-0001","DOIUrl":"https://doi.org/10.4271/2021-22-0001","url":null,"abstract":"Australian vehicle standards are governed nationwide by the Australian Design Rules (ADR) that specify regulatory standards for the safety performance of road vehicles. The aim of this study was to quantify the number of lives saved on New South Wales roads by accelerating the update of safer vehicles by aligning ADR with global best practice represented by the new European Union General Safety Regulation. The methods used in this study to estimate the impact of future road safety interventions was a logical reduction of current crashes into future casualty outcomes, the residual, based on what is known about delivery of future safety measures and system improvements. A database was prepared including information on all 2018 fatalities on NSW roads (n=347). The database contained information for each individual crash, the vehicles and persons involved and the road environment where the crash occurred. In the results of this study, it was found that a scenario of aligning Australian Design Rules with the EU General Safety Regulation on a number of key vehicle safety technologies could potentially save around 20 lives annually in 2030 and around 90 lives cumulatively, over and beyond the baseline trend, between 2023 and 2030 in New South Wales. It could be concluded that vehicle safety has significant lives saving potential, however, the time lag of benefit realisation will require continued investments in other areas like infrastructure safety, speed management and enforcement in the coming decades to achieve future trauma reduction targets in NSW.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"65 1","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45241371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pedestrian Detection before Motor Vehicle Moving Off Maneuvers using Ultrasonic Sensors in the Vehicle Front. 车头超声波传感器在机动车辆偏离机动前的行人检测。
Stapp car crash journal Pub Date : 2021-11-01 DOI: 10.4271/2021-22-0007
Yasuhiro Matsui, S. Oikawa
{"title":"Pedestrian Detection before Motor Vehicle Moving Off Maneuvers using Ultrasonic Sensors in the Vehicle Front.","authors":"Yasuhiro Matsui, S. Oikawa","doi":"10.4271/2021-22-0007","DOIUrl":"https://doi.org/10.4271/2021-22-0007","url":null,"abstract":"Vehicles that start moving from a stationary position can cause fatal traffic accidents involving pedestrians. Ultrasonic sensors installed in the vehicle front are an active technology designed to alert drivers to the presence of stationary objects such as rigid walls in front of their vehicles. However, the ability of such sensors to detect humans has not yet been established. Therefore, this study aims to ascertain whether these sensor systems can successfully detect humans. First, we conducted experiments using four vehicles equipped with ultrasonic sensor systems for vehicle-forward moving-off maneuvers and investigated the detection distances between the vehicles and a pipe (1 m long and having a diameter of 75 mm), child, adult female, or adult male. The detections of human volunteers were evaluated under two different conditions: front-facing and sidefacing toward the front of each vehicle. Front-facing is defined as the condition where the human faces the vehicle front, while side-facing is that where the side of the human faces it. For both the front-facing and side-facing conditions, the results indicated that the sensor-detection distances for a child were shorter than those for the pipe, whereas those for adults were less than or approximately equivalent to those for the pipe. These results revealed that ultrasonic sensor systems for vehicle-forward movingoff maneuvers can detect not only stationary objects but also humans, indicating that ultrasonic sensors installed in the vehicle front could possibly reduce the risk of vehicle-forward moving-off accidents involving pedestrians.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"65 1","pages":"163-187"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45926327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Occupant-Based Injury Severity Prediction. 基于乘员的伤害严重程度预测。
Stapp car crash journal Pub Date : 2021-11-01 DOI: 10.4271/2021-22-0002
S. H. Owen, Jeffrey W Joyner, Peng Zhang, Stewart C. Wang
{"title":"Occupant-Based Injury Severity Prediction.","authors":"S. H. Owen, Jeffrey W Joyner, Peng Zhang, Stewart C. Wang","doi":"10.4271/2021-22-0002","DOIUrl":"https://doi.org/10.4271/2021-22-0002","url":null,"abstract":"Road traffic injuries continue to be a leading cause of death around the world. Rapid emergency response is a key factor in improving occupant outcomes. Over the past ten years, Injury Severity Prediction (ISP) models have been developed and deployed to assist in effective dispatch of emergency medical services (EMS). Prior versions of ISP have relied on driver-based scenarios that are not relevant in many of the possible autonomous vehicle (AV) contexts. This paper describes the development and validation of occupant-based ISP models that predict injury severity for specific vehicle seat positions. Models show improved predictive performance, sensitivity 80% and specificity over 95%, for front row occupants. Second row occupant models have similar specificity, but sensitivity scores dropped due to occupant heterogeneity and small sample sizes of seriously injured occupants.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"65 1","pages":"17-28"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43804190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信