Stapp car crash journal最新文献

筛选
英文 中文
Machine-Learning-Accelerated Simulations for the Design of Airbag Constrained by Obstacles at Rest. 用于设计静止时受障碍物限制的安全气囊的机器学习加速模拟。
Stapp car crash journal Pub Date : 2024-06-01 Epub Date: 2024-03-03 DOI: 10.4271/2023-22-0001
José E Valenzuela Del Río, Richard Lancashire, Karan Chatrath, Peter Ritmeijer, Elena Arvanitis, Lucia Mirabella
{"title":"Machine-Learning-Accelerated Simulations for the Design of Airbag Constrained by Obstacles at Rest.","authors":"José E Valenzuela Del Río, Richard Lancashire, Karan Chatrath, Peter Ritmeijer, Elena Arvanitis, Lucia Mirabella","doi":"10.4271/2023-22-0001","DOIUrl":"10.4271/2023-22-0001","url":null,"abstract":"<p><p>Predicting airbag deployment geometries is an important task for airbag and vehicle designers to meet safety standards based on biomechanical injury risk functions. This prediction is also an extraordinarily complex problem given the number of disciplines and their interactions. State-of-the-art airbag deployment geometry simulations (including time history) entail large, computationally expensive numerical methods such as finite element analysis (FEA) and computational fluid dynamics (CFD), among others. This complexity results in exceptionally large simulation times, making thorough exploration of the design space prohibitive. This paper proposes new parametric simulation models which drastically accelerate airbag deployment geometry predictions while maintaining the accuracy of the airbag deployment geometry at reasonable levels; these models, called herein machine learning (ML)-accelerated models, blend physical system modes with data-driven techniques to accomplish fast predictions within a design space defined by airbag and impactor parameters. These ML-accelerated models are evaluated with virtual test cases of increasing complexity: from airbag deployments against a locked deformable obstacle to airbag deployments against free rigid obstacles; the dimension of the tested design spaces is up to six variables. ML training times are documented for completeness; thus, airbag design explorers or optimization engineers can assess the full budget for ML-accelerated approaches including training. In these test cases, the ML-accelerated simulation models run three orders of magnitude faster than the high-fidelity multi-physics methods, while accuracies are kept within reasonable levels within the design space.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"67 ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140185767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of DAMAGE Algorithm in Frontal Crashes. 评估正面碰撞中的 DAMAGE 算法。
Stapp car crash journal Pub Date : 2024-06-01 Epub Date: 2024-04-16 DOI: 10.4271/2023-22-0006
Priya Prasad, Saeed D Barbat, Anil Kalra, Dainius J Dalmotas
{"title":"Evaluation of DAMAGE Algorithm in Frontal Crashes.","authors":"Priya Prasad, Saeed D Barbat, Anil Kalra, Dainius J Dalmotas","doi":"10.4271/2023-22-0006","DOIUrl":"10.4271/2023-22-0006","url":null,"abstract":"<p><p>With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 - BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world. Although DAMAGE correlates well with MPS in the human brain model across several test scenarios, the predicted risk of AIS2+ brain injuries are too high compared to real-world experience. The prediction of AIS4+ brain injury risk in lower velocity crashes is good, but too high in NCAP-like and high speed angular frontal crashes.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"67 ","pages":"171-179"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ligaments Laxity and Elongation at Injuryin Flexed knees during Lateral Impact Conditions. 侧面碰撞条件下弯曲膝盖受伤时韧带松弛和伸长率。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0003
Sahar Benadi, Xavier Trosseille, Philippe Petit, Jérôme Uriot, Yoann Lafon, Philippe Beillas
{"title":"Ligaments Laxity and Elongation at Injuryin Flexed knees during Lateral Impact Conditions.","authors":"Sahar Benadi,&nbsp;Xavier Trosseille,&nbsp;Philippe Petit,&nbsp;Jérôme Uriot,&nbsp;Yoann Lafon,&nbsp;Philippe Beillas","doi":"10.4271/2022-22-0003","DOIUrl":"10.4271/2022-22-0003","url":null,"abstract":"<p><p>The knee is one of the regions of interest for pedestrian safety assessment. Past testing to study knee ligament injuries for pedestrian impact only included knees in full extension and mostly focused on global responses. As the knee flexion angle and the initial ligament laxity may affect the elongation at which ligaments fail, the objectives of this study were (1) to design an experimental protocol to assess the laxity of knee ligaments before measuring their elongation at failure, (2) to apply it in paired knee tests at two flexion angles (10 and 45 degrees). The laxity tests combined strain gauges to measure bone strains near insertions that would result from ligament forces and a custom machine to exercise the knee in all directions. Failure was assessed using a four-point bending setup with additional degrees of freedom on the axial rotation and displacement of the femur. A template was designed to ensure that the two setups used the exact same starting position. The protocol was applied to six pairs of knees which were tested until the failure of all ligaments. In the laxity tests, a higher compliance of the knee was observed at 45 degrees compared to 10 degrees. Minimum lengths associated with the beginning of bone loading were also successfully identified for the collateral ligaments, but the process was less successful for the cruciate ligaments. The failure tests suggested increased elongation and length at failure for the ligaments and their bundles at 45°. This could be consistent with the higher compliance in static test, but the minimum lengths identified on the collaterals did not explain this difference during failure. The results highlight the possible relationship between position, laxity and elongation at failure in a lateral loading and provide a dataset including 3D coordinates of insertions to continue the investigation using a modelling approach. Perspectives are also outlined to improve upon the laxity determination protocol.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"69-97"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41111344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Driving Behavior during Right-Turn Maneuvers at Intersections on Left-Hand Traffic Roads. 在左侧交通道路交叉口进行右转机动时的驾驶行为。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0008
Yasuhiro Matsui, Naruyuki Hosokawa, Shoko Oikawa
{"title":"Driving Behavior during Right-Turn Maneuvers at Intersections on Left-Hand Traffic Roads.","authors":"Yasuhiro Matsui,&nbsp;Naruyuki Hosokawa,&nbsp;Shoko Oikawa","doi":"10.4271/2022-22-0008","DOIUrl":"10.4271/2022-22-0008","url":null,"abstract":"<p><p>In Japan, where vehicles drive on the left side of the road, pedestrian fatal accidents caused by vehicles traveling at speeds of less than or equal to 20 km/h, occur most frequently when a vehicle is turning right. The objective of the present study is to clarify the driving behavior in terms of eye glances and driver speeds when drivers of two different types of vehicles turn right at an intersection on a left-hand traffic road. We experimentally investigated the drivers' gaze, vehicle speed, and distance on the vehicle traveling trajectory from the vehicle to the pedestrian crossing line, using a sedan and a truck with a gross vehicle weight of < 7.5 tons (a light-duty truck) during right-turn maneuver. We considered four different conditions: no pedestrian dummy (No-P), right pedestrian dummy (R-P), left pedestrian dummy (L-P), and right and left pedestrian dummies (RL-P). Regarding the gazing characteristics, there was no significant difference in the average total gaze time at each AOI between the two vehicles under different conditions, which suggests that the total gaze time was not affected by the vehicle type. All participants gazed at the pedestrian dummies in R-P, L-P, and RL-P. However, the average total gaze time at the right pedestrian dummy (0.63-0.72 s) in R-P was significantly shorter than that at the left pedestrian dummy (1.46-1.57 s) in L- P for both vehicles. The average vehicle speed at the entrance line to the intersection (L1) of the light-duty truck (16.8-18.2 km/h) was lower than that of the sedan (18.8-19.7 km/h). The average vehicle speed at the pedestrian crossing line (L0) of the light-duty truck (15.5-16.0 km/h) was lower than that of the sedan (16.0-17.8 km/h). There was no significant difference in the average vehicle speeds at L1 and L0 between them under any two conditions. We investigated the estimated time to collision (TTC), calculated from the distance on the vehicle traveling trajectory from the vehicle to the pedestrian crossing line and the vehicle speed at the moment when the drivers first gazed at the pedestrian dummies. The average TTC of the right pedestrian dummy in R-P for the sedan (3.5 s) was significantly shorter than that for the light-duty truck (4.0 s). Similarly, the average TTC of the left pedestrian dummy in L-P for the sedan (3.7 s) was significantly shorter than that for the light-duty truck (4.8 s). The driving characteristics obtained in this study may contribute to the development of advanced driver support systems, particularly for vehicles turning right at intersections.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"217-238"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41150609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Potential Injury Patterns and Occupant Kinematicsin Frontal Impact with PMHS in Reclined Postures. PMHS在倾斜姿势下正面碰撞潜在损伤模式和乘员运动的研究。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0001
Pascal Baudrit, Jérôme Uriot, Olivier Richard, Matthieu Debray
{"title":"Investigation of Potential Injury Patterns and Occupant Kinematicsin Frontal Impact with PMHS in Reclined Postures.","authors":"Pascal Baudrit,&nbsp;Jérôme Uriot,&nbsp;Olivier Richard,&nbsp;Matthieu Debray","doi":"10.4271/2022-22-0001","DOIUrl":"https://doi.org/10.4271/2022-22-0001","url":null,"abstract":"<p><p>The reality of the autonomous vehicle in a near future is growing and is expected to induce significant change inthe occupant posture with respect to a standard driving posture. The delegated driving would allow sleeping and/or resting in a seatwith a reclined posture. However, the data in the literature are rare on the body kinematics, human tolerance, and injury types insuch reclined postures. The current study aims at increasing the knowledge in the domain and providing useful data to assess therelevance of the standard injury assessment tools such as anthropomorphic test devices or finite element human body models. For that purpose, a test series of three male Post-Mortem Human Subjects (PMHS) were performed in frontal impact at a 13.4 m/sdelta V. The backseat inclination was 58 degrees with respect to the vertical axis. The semi-rigid seat developed by Uriot et al.(2015) was used with a stiffer seat ramp. The restraint was composed of a lap belt equipped with two 3.5 kN load limiters, and ofa shoulder belt equipped of a 4 kN load limiter on the upper anchorage placed in the vicinity of the shoulder. The belts, the semi-rigid seat, and the footrest were equipped with force sensors. The rotations of the seat pan and of the seat ramp were also measured. The PMHS were instrumented with multi-axis accelerometers and Y angular velocity sensors attached to the head, thorax (T1 andT12 vertebrae), and sacrum. Strain gauges were glued onto the anterior face of the L1 to L5 lumbar vertebrae and onto the anteriorface of the iliac wings. To estimate the pelvis kinematics, a rigid support equipped with targets was fixed onto the femur shaft. Prior to test, X-ray imagery was performed to exhibit the initial curvature of the lumbar spine. After the tests, an in-depth necropsywas done, with a specific attention to the lumbar spine. In the chosen test conditions, no lap-belt submarining was observed for the three PMHS. One PMHS sustained an AIS2 pelvic ringfracture and another one sustained an AIS4 injury with complete separation of the left and right sacroiliac joints. Lumbar discruptures and vertebral fractures were observed for the three PMHS (AIS 2 and AIS3 coding). The number of separated rib fractureswere very different from one PMHS to another (0, 6 and 33). Response corridors for the external forces and kinematics were builtand are presented in the paper. The results are discussed by comparing with existing data for which the backseat was in standardposture.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41168556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effect of Tissue Erosion Modeling Techniques on Pedestrian Impact Kinematics. 组织侵蚀建模技术对行人碰撞运动学的影响。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0007
Daniel Grindle, Costin Untaroiu
{"title":"Effect of Tissue Erosion Modeling Techniques on Pedestrian Impact Kinematics.","authors":"Daniel Grindle,&nbsp;Costin Untaroiu","doi":"10.4271/2022-22-0007","DOIUrl":"10.4271/2022-22-0007","url":null,"abstract":"<p><p>The pedestrian is one of the most vulnerable road users and has experienced increased numbers of injuries and deaths caused by car-to-pedestrian collisions over the last decade. To curb this trend, finite element models of pedestrians have been developed to investigate pedestrian protection in vehicle impact simulations. While useful, modeling practices vary across research groups, especially when applying knee/ankle ligament and bone failure. To help better standardize modeling practices this study explored the effect of knee ligament and bone element elimination on pedestrian impact outcomes. A male 50th percentile model was impacted by three European generic vehicles at 30, 40, and 50 km/h. The pedestrian model was set to three element elimination settings: the \"Off-model\" didn't allow any element erosion, the \"Lig-model\" allowed lower-extremity ligament erosion, and the \"All-model\" allowed lower-extremity ligament and bone erosion. Failure toggling had a significant effect on impact outcomes (0 < p ≤ 0.03). The head impact time response was typically the smallest for the \"Off-model\" while the wrap around distance response was always largest for the All-model. Moderate differences in maximum vehicle-pedestrian contact forces across elimination techniques were reported in this study (0.1 - 1.7 kN). Future work will examine additional failure modelling approaches, model anthropometries and vehicles to expand this investigation.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"207-216"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41151113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparison of the Mid-Size Male THOR and Hybrid III ATDs in Vehicle Frontal Crash Tests. 中型男性THOR和混合III型ATD在汽车正面碰撞试验中的比较。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0005
Chris O'Connor, Agnes Kim, Tim Barrette, Jeff Dix
{"title":"A Comparison of the Mid-Size Male THOR and Hybrid III ATDs in Vehicle Frontal Crash Tests.","authors":"Chris O'Connor,&nbsp;Agnes Kim,&nbsp;Tim Barrette,&nbsp;Jeff Dix","doi":"10.4271/2022-22-0005","DOIUrl":"10.4271/2022-22-0005","url":null,"abstract":"<p><p>In order to evaluate the THOR-50M as a front impact Anthropomorphic Test Device (ATD) for vehicle safety design, the ATD was compared to the H3-50M in matching vehicle crash tests for 20 unique vehicle models from 2 vehicle manufacturers. For the belted driver condition, a total of fifty-four crash tests were investigated in the 56.3 km/h (35 mph) front rigid barrier impact condition. Four more tests were compared for the unbelted driver and right front passenger at 40.2 km/h (25 mph) in the flat frontal and 30-degree right oblique rigid barrier impact conditions. The two ATDs were also evaluated for their ability to predict injury risk by comparing their fleet average injury risk to Crash Investigation Sampling System (CISS) accident data for similar conditions. The differences in seating position and their effect on ATD responses were also investigated. This study showed that the belted THOR-50M injury responses were higher than the H3-50M by 25%-180%, in all reported ATD responses, except chest acceleration. For one unbelted condition, the THOR-50M reported 200%-300% higher neck responses than the H3-50M, primarily due to head contact to the roof structure in a mid-sized sedan. The THOR-50M overpredicted the injury risk based on chest deflection compared to the CISS accident data by at least a factor of 4 times. The THOR-50M also overpredicted the injury risk based on BrIC by at least a factor of 10 times. Future work is needed to investigate these overpredictions with respect to ATD construction, injury risk curves, and seating procedures.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"143-173"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41142738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lower Extremity Validation of a Human Body Model for High Rate Axial Loading in the Underbody Blast Environment. 人体模型在车底爆炸环境中高速轴向载荷的下限验证。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0004
Zachary S Hostetler, Juliette Caffrey, Jazmine Aira, F Scott Gayzik
{"title":"Lower Extremity Validation of a Human Body Model for High Rate Axial Loading in the Underbody Blast Environment.","authors":"Zachary S Hostetler,&nbsp;Juliette Caffrey,&nbsp;Jazmine Aira,&nbsp;F Scott Gayzik","doi":"10.4271/2022-22-0004","DOIUrl":"https://doi.org/10.4271/2022-22-0004","url":null,"abstract":"<p><p>While the use of Human Body Models (HBMs) in the underbody blast (UBB) environment has increased and shown positive results, the potential of these models has not been fully explored. Obtaining accurate kinematic and kinetic response are necessary to better understand the injury mechanisms for military safety applications. The objective of this study was to validate the Global Human Body Models Consortium (GHBMC) M50 lower extremity using a combined objective rating scheme in vertical and horizontal high-rate axial loading. The model's lower extremity biomechanical response was compared to Post Mortem Human Subjects (PMHS) subjects for vertically and horizontally-applied high rate axial loading. Two distinct experimental setups were used for model validation, comprising a total of 33 distinct end points for validation. A combined Correlation and Analysis (CORA) score that incorporates CORA, time-to-peak (TTP) and peak magnitude of the experimental signals and ISO TS 18571 was used to evaluate the model response. For the horizontal impacts, the combined CORA scores were 0.80, 0.84, and 0.81 for compression, force, and strain respectively. For the vertical impacts combined CORA scores for the knee Z force, compression and heel Z displacement ranged from 0.70-0.81, 0.87-0.91, and 0.82-0.99 respectively. The GHBMC lower extremity model showed good agreement with PMHS experimental data in the horizontal and vertical loading environment in 33 unique tests. The accuracy is demonstrated by using the ISO TS 18571 standard and a combined CORA score that takes into consideration the peak and time to peak of the signal. The results of this study show that GHBMC v 6.0 HBM lower extremity can be used for kinetic and kinematic predictions in the UBB environment.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"99-142"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41136963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Head Injury Risks During Car-to-Pedestrian Collisions Using Realistic Vehicle and Detailed Human Body Models. 使用真实的车辆和详细的人体模型了解汽车与行人碰撞过程中的头部伤害风险。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0006
Kalish Gunasekaran, Sakib Ul Islam, Haojie Mao
{"title":"Understanding Head Injury Risks During Car-to-Pedestrian Collisions Using Realistic Vehicle and Detailed Human Body Models.","authors":"Kalish Gunasekaran,&nbsp;Sakib Ul Islam,&nbsp;Haojie Mao","doi":"10.4271/2022-22-0006","DOIUrl":"10.4271/2022-22-0006","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is the leading cause of death and long-term disability in road traffic accidents (RTAs). Researchers have examined the effect of vehicle front shape and pedestrian body size on the risk of pedestrian head injury. On the other hand, the relationship between vehicle front shape parameters and pedestrian TBI risks involving a diverse population with varying body sizes has yet to be investigated. Thus, the purpose of this study was to comprehensively study the effect of vehicle front shape parameters and various pedestrian bodies ranging from 95th percentile male (AM95) to 6 years old (YO) child on the dynamic response of the head and the risk of TBIs during primary (vehicle) impact. At three different collision speeds (30, 40, and 50 km/h), a total of 36 car-to-pedestrian collisions (CPCs) were reconstructed using three different vehicle types (Subcompact passenger sedan, mid-sedan, and sports utility vehicle (SUV)) and four distinct THUMS pedestrian finite element (FE) models (AM50, AM95, AF05, and 6YO). We assessed skull stress and brain strains besides head linear and rotational kinematics. Our findings indicate that vehicle shape parameters especially bonnet leading edge height (BLEH), when being divided by the height of the Center of Gravity of the human body, correlated positively to head kinematics. The data from this study using realistic vehicle structures and detailed human body models showed that smaller BLEH/CG ratios reduced head injury criteria (HIC) and brain injury criteria (BrIC) values for the car center to mid-stance walking pedestrian impacts but with low-to-moderate R squared values between 0.2 to 0.5. Smaller BLEH/CG reduced head lateral bending velocities with R squared values of 0.57 to 0.63 for all impact velocities, and reduced HIC with R squared value of 0.62 for 50 km/h cases. In the future, simulations with realistic car structures and detailed human body models will be further used to simulate impacts at different locations and with various body shapes/postures.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"175-205"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41158181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obese Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts. 正面碰撞中倾斜和直立姿势下肥胖乘客的反应。
Stapp car crash journal Pub Date : 2022-11-01 DOI: 10.4271/2022-22-0002
Karthik Somasundaram, John R Humm, Narayan Yoganandan, Hans Hauschild, Klaus Driesslein, Frank A Pintar
{"title":"Obese Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts.","authors":"Karthik Somasundaram,&nbsp;John R Humm,&nbsp;Narayan Yoganandan,&nbsp;Hans Hauschild,&nbsp;Klaus Driesslein,&nbsp;Frank A Pintar","doi":"10.4271/2022-22-0002","DOIUrl":"https://doi.org/10.4271/2022-22-0002","url":null,"abstract":"<p><p>The American population is getting heavier and automated vehicles will accommodate unconventional postures. While studies replicating mid-size and upright fore-aft seated occupants are numerous, experiments with post-mortem human subjects (PMHS) with obese and reclined occupants are sparse. The objective of this study was to compare the kinematics of the head-neck, torso and pelvis, and document injuries and injury patterns in frontal impacts. Six PMHS with a mean body mass index of 38.2 ± 5.3 kg/m2 were equally divided between upright and reclined groups (seatback: 23°, 45°), restrained by a three-point integrated belt, positioned on a semi-rigid seat, and exposed to low and moderate velocities (15, 32 km/h). Data included belt loads, spinal accelerations, kinematics, and injuries from x-rays, computed tomography, and necropsy. At 15 km/h speed, no significant difference in the occupant kinematics and evidence of orthopedic failure was observed. At 32 km/h speed, the primary difference between the cohorts was significantly larger Z displacements in the reclined occupant at the head (190 ± 32 mm, vs. 105 ± 33 mm p < 0.05) and femur (52 ± 18 mm vs. 30 ± 10 mm, p < 0.05). All the moderate-speed tests produced at least one thorax injury. Rib fractures were scattered around the circumference of the rib-cage in the upright, while they were primarily concentrated on the anterior aspect of the rib-cage in two reclined specimens. Although MAIS was the same in both groups, the reclined specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. While not statistical, these results suggest enhanced injuries with reclined obese occupants. These results could serve as a data set for validating the response of restrained obese anthropometric test device (ATDs) and computational human body models.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"66 ","pages":"31-68"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41131425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信