Xiaofeng Pan , Jian Guan , Shilin Cao , Xiaojuan Ma , Yonghao Ni , Qinhua Wang
{"title":"An oxidative metal ions-free lignin-catalyzed multifunctional hydrogel bioelectronics for codable eye communication","authors":"Xiaofeng Pan , Jian Guan , Shilin Cao , Xiaojuan Ma , Yonghao Ni , Qinhua Wang","doi":"10.1016/j.jcis.2024.11.041","DOIUrl":"10.1016/j.jcis.2024.11.041","url":null,"abstract":"<div><div>To meet the stringent requirements of wearable and flexible electronics for functionality and comfort, it is urgent to develop green conductive, self-adhesive, and stretchable functional hydrogels. The chelates of transition metal ions and lignosulfonate sodium (LS) can impart multi-functionality to the hydrogel and significantly improve the hydrogel’s gelation speed. However, the presence of metal ions may weaken the adhesiveness of hydrogels by shielding the functional adhesive groups. Here, an oxidative metal ions-free lignin-catalyzed multifunctional polyacrylic acid (PAA) hydrogel is proposed. LS itself can undergo a redox reaction with the initiator to generate many free radicals, thereby catalyzing the rapid polymerization of polymer monomers at room temperature and subsequent gelation. Furthermore, LS can easily improve the hydrogels’ softness (compressive modulus: ∼7 kPa) and stretchability (maximum ∼2700 %). Interestingly, LS can simultaneously promote the hydrogel’s conductivity, adhesion, and UV blocking. Notably, the hydrogel integrating these advantageous features is suitable as non-invasive electronics in the human epidermis. We explored its ability to act as adhesive bioelectrodes to collect electrooculographic signals in patients with physical and language impairments. Bioelectrodes can recognize the patient’s eye movements. The displayed electrical signal can be output in 6 languages after being encoded. This provides a valuable case for LS-doped functional hydrogels in the medical field.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 753-761"},"PeriodicalIF":9.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengzong Zeng , Xia Shen , Kun Shen , Linzhao Bao , Guangyin Liao , Jun Shen
{"title":"Boosted the thermal conductivity of liquid metal via bridging diamond particles with graphite","authors":"Chengzong Zeng , Xia Shen , Kun Shen , Linzhao Bao , Guangyin Liao , Jun Shen","doi":"10.1016/j.jcis.2024.11.037","DOIUrl":"10.1016/j.jcis.2024.11.037","url":null,"abstract":"<div><div>The liquid metal (LM) composite is regarded as having potential and wide-ranging applications in electronic thermal management. Enhancing the thermal conductivity of LM is a crucial matter. Herein, a novel LM composite of eutectic gallium-indium (EGaIn)/diamond/graphite was developed. A highest thermal conductivity of 133 ± 3 W m<sup>−1</sup> K<sup>−1</sup> was achieved, 411 % higher than that of the matrix. The bonding mechanism reveals that the interfacial adsorption energy (<span><math><mrow><mi>Δ</mi><mi>E</mi></mrow></math></span>) of graphite and EGaIn can be effectively decreased by the functional groups of graphite (by −108 % for –OH and −125 % for −C<img>O) and the oxide of EGaIn (by −64 %). Furthermore, the <span><math><mrow><mi>Δ</mi><mi>E</mi></mrow></math></span> of diamond and EGaIn can be significantly reduced through the oxidation of EGaIn (by −83 %) and the H-terminal of diamond (by −187 %). The thermal conductance mechanism suggests that a 3 vol% graphite content in the EGaIn/40 vol% diamond/graphite composite can form an excellent thermal conductance bridge among diamond particles. However, the thermal conductivity of the composite significantly decreased when too much graphite was added due to the tendency of the graphite to coat the diamond particles. There was no significant change in the melting point of EGaIn after being mixed with diamond and graphite. The EGaIn/diamond/graphite composite also demonstrated excellent thermal management performance in LED lamps and CPU heat dissipation as a thermal interface material, particularly in high-power electronic devices. This work presents the potential to enhance the thermal conductivity of LM-based composite by bridging spheroidal particles with a flaky material.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 643-656"},"PeriodicalIF":9.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Arif , Ayaz Mahsud , Haoran Xing , Abdul Hannan Zahid , Qian Liang , Muhammad Amjad Majeed , Amjad Ali , Xiazhang Li , Zhansheng Lu , Francis Leonard Deepak , Tahir Muhmood , Yinjuan Chen
{"title":"Modulating the local electron density at built-in interface iron single sites in Fe-CN/MoO3 heterostructure for enhanced CO2 reduction to CH4 and photo-Fenton reaction","authors":"Muhammad Arif , Ayaz Mahsud , Haoran Xing , Abdul Hannan Zahid , Qian Liang , Muhammad Amjad Majeed , Amjad Ali , Xiazhang Li , Zhansheng Lu , Francis Leonard Deepak , Tahir Muhmood , Yinjuan Chen","doi":"10.1016/j.jcis.2024.11.038","DOIUrl":"10.1016/j.jcis.2024.11.038","url":null,"abstract":"<div><div>The catalytic efficiency of heterogeneous photocatalytic CO<sub>2</sub> reduction and photo-Fenton H<sub>2</sub>O<sub>2</sub> activation<!--> <!-->is<!--> <!-->closely related to the local electron density of reaction center atoms. However, electron-hole recombination from random charge transfer significantly restricts the targeted electron delivery to the active center. Herein, Fe-C<sub>3</sub>N<sub>4</sub>/MoO<sub>3</sub> heterojunction with interfacial coordination of atomically dispersed Fe-N<sub>4</sub> sites with the O interface of MoO<sub>3</sub> was synthesized by simple hydrothermal method. Based on the experimental results and density functional theory calculation (DFT), the heterojunction structure fosters accelerated interfacial electron transfer due to directional interfacial electric field (IEF) between Fe-CN and MoO heterogeneous interfaces, and the interfacial bond between Fe-N<sub>4</sub> sites and O at the built-in interface regulates the local electron density of Fe-N<sub>4</sub> active center. DFT further reveals that the interfacial electron flow and concentrated electron density at Fe-N<sub>4</sub> sites result from the coordination between Fe-N<sub>4</sub> and MoO<sub>3</sub> interfaces. This directs electron flow towards the Fe center, significantly enhancing CO<sub>2</sub> adsorption and H<sub>2</sub>O<sub>2</sub> conversion efficiency. PDOS analysis shows that the <em>d</em><sub>yz</sub> and <em>d</em><sub>z</sub><sup>2</sup> orbitals of the isolated Fe atom in Fe-CN overlap with the <em>p</em><sub>z</sub> orbital of the O atom in MoO<sub>3</sub>, playing a pivotal role in CO<sub>2</sub> adsorption. Consequently, the Fe-CN/MoO<sub>3</sub> heterojunction demonstrated highly efficient photocatalytic CO<sub>2</sub> reduction to CH<sub>4</sub>, coupled with benzyl alcohol oxidation and photo-Fenton tetracycline degradation. These findings offer a promising multifunctional catalyst strategy for the development of energy conversion and environmental remediation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 1053-1066"},"PeriodicalIF":9.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yameng Jiao , Qiang Song , Xu Yang , Ruimei Yuan , Di Zhao , Yuanxiao Zhao , Qingliang Shen , Hejun Li
{"title":"Strong and weak interface synergistic enhance the mechanical and microwave absorption properties of alumina","authors":"Yameng Jiao , Qiang Song , Xu Yang , Ruimei Yuan , Di Zhao , Yuanxiao Zhao , Qingliang Shen , Hejun Li","doi":"10.1016/j.jcis.2024.11.044","DOIUrl":"10.1016/j.jcis.2024.11.044","url":null,"abstract":"<div><div>Multifaceted balance makes the design of ceramics difficult but is urgently needed. This work purposes to grow uniform edge-rich graphene (ERG) on alumina (Al<sub>2</sub>O<sub>3</sub>/ERG) in-situ, then constructs a discontinuous conductive, strengthening and toughening network of crosslinked ERG by mixing Al<sub>2</sub>O<sub>3</sub>/ERG with Al<sub>2</sub>O<sub>3</sub> and sintering. Under the guarantee of the tight-bound covalent interface, ERG and doping Al<sub>2</sub>O<sub>3</sub> strengthen and toughen the ceramic by synergistic effect of weak and strong interface. And doping Al<sub>2</sub>O<sub>3</sub> interrupts the conductive network of ERG to improve the impedance matching and endow material with moderate electromagnetic wave (EMW) loss capacity. The optimal flexural strength and fracture toughness of the composite ceramic reach 333.04 MPa and 12.43 MPa⋅m<sup>1/2</sup>, respectively. Meanwhile, it can absorb 80 % or more of the incident EMW in X-band with a matching thickness of 2 mm. This work takes full advantage of ERG to prepare load-bearing EMW absorbing ceramics, which expands the idea for material design.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 1007-1015"},"PeriodicalIF":9.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polyacrylic Acid-Reinforced gelatin hydrogels with enhanced mechanical properties, temperature-responsiveness and antimicrobial activity for smart encryption and salmon freshness monitoring","authors":"Siyao Luo, Chang-Ying Hu, Shiqing Huang, Xiaowen Xu","doi":"10.1016/j.jcis.2024.11.048","DOIUrl":"10.1016/j.jcis.2024.11.048","url":null,"abstract":"<div><div>Hydrogels hold great potential for use in intelligent packaging, yet they often suffer from limited functionality and inadequate mechanical strength when applied to anticounterfeiting and freshness monitoring. In this study, we present a straightforward method to create a multifunctional hydrogel by in-situ polymerizing acrylic acid (PAA) within a gelatin-Al<sup>3+</sup> system. The resulting hydrogels exhibited an elongation at break of over 1200 %, a tensile stress of 1.20 MPa, and impressive toughness reaching 5.15 MJ/m<sup>3</sup>, significantly outperforming traditional gelatin-based hydrogels that typically achieve less than 800 % strain and below 1 MPa stress. These hydrogels also showed exceptional antifatigue and tear resistance, with a tearing energy of 5200 J/m<sup>2</sup>, greatly exceeding the 1000 J/m<sup>2</sup> standard of typical double network hydrogels, and were capable of supporting weights 1560 times their own mass. The strong hydrogen bonding between the –COOH groups of PAA and the –NH<sub>2</sub> groups of gelatins contributed to an upper critical solution temperature above 40°C, with adaptable PAA content allowing for anticounterfeiting applications. The hydrogel could encode information such as self-erasing numbers, QR codes, and ASCII binary codes, changing its encoded data with temperature shifts and erasing at room temperature to enhance data security. Additionally, it exhibited potent antibacterial properties against <em>S. aureus</em> and <em>E. coli</em>, immobilized anthocyanin as an ammonia-responsive indicator, and accurately tracked salmon spoilage by correlating color changes with total volatile basic nitrogen content. These characteristics make the hydrogel highly suitable for smart packaging applications within the food industry.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 725-741"},"PeriodicalIF":9.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxuan Shao , Junjie Ni , Jie Yin , Xinqing Liu , Yulai Song , Yue Xu , Shuai Guo , Laima Luo
{"title":"Heterogeneous electrocatalyst of nanoscale Fe-based medium-entropy alloy and sulfide for oxygen evolution reaction","authors":"Yuxuan Shao , Junjie Ni , Jie Yin , Xinqing Liu , Yulai Song , Yue Xu , Shuai Guo , Laima Luo","doi":"10.1016/j.jcis.2024.11.034","DOIUrl":"10.1016/j.jcis.2024.11.034","url":null,"abstract":"<div><div>The construction of heterojunctions between non-noble-metal based compounds affords a scheme for accelerating the reaction kinetics of oxygen evolution reaction (OER) without using precious mental materials, which is extremely important but remains challenging. Herein, the heterogeneous structure between Fe<sub>60</sub>Co<sub>10</sub>Ni<sub>10</sub>Cr<sub>10</sub>Mn<sub>10</sub> medium-entropy alloy (MEA) and FeS<sub>2</sub> is developed by a mechanical alloying approach. The resulting MEA-30 wt%FeS<sub>2</sub> delivers a high OER activity with a low overpotential of 261.6 mV at 10 mA/cm<sup>2</sup>, along with Tafel slope of 52.7 mV/dec in 1.0 mol/L KOH solution, superior to the commercial RuO<sub>2</sub>. The combination of detailed characterization techniques and density functional theory (DFT) calculation reveals that the heterojunctions between Fe-based MEA and FeS<sub>2</sub> generates the synergistic effect on the activation and formation steps of OOH*, thus promoting the OER reaction kinetics. Furthermore, the abundant active sites provided by the reconstructions of MEA-30 wt%FeS<sub>2</sub> during OER process also contributes to the catalytic performance. This work greatly expands the application scope of medium-entropy materials and provides a new method for the fabrication of novel heterogeneous electrocatalyst of Fe-based MEA and FeS<sub>2</sub>.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 742-752"},"PeriodicalIF":9.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuecen Zhao , Hengzhen Feng , Wenzhong Lou , Li Li , Quansheng Wang , Guifu Ding , Congchun Zhang
{"title":"Intelligent temperature measuring thermal spray multilayer thermal barrier coatings based on embedded thin film thermocouples","authors":"Yuecen Zhao , Hengzhen Feng , Wenzhong Lou , Li Li , Quansheng Wang , Guifu Ding , Congchun Zhang","doi":"10.1016/j.jcis.2024.11.039","DOIUrl":"10.1016/j.jcis.2024.11.039","url":null,"abstract":"<div><div>Thermal barrier coatings (TBCs) have garnered significant attention as crucial protective components for turbine blades. However, the current use of TBCs is limited by their singular functionality and the inability to accurately obtain the temperature gradient distribution within the coatings. Addressing the aforementioned issues, this paper proposes an intelligent thermal barrier coating embedded with thin-film thermocouples. This method not only provides effective thermal protection but also facilitates the precise measurement of the internal temperature gradient within the coating. To mitigate the thermal mismatch in TBCs under high-temperature environments, which can compromise their lifespan, this study employs multi-objective optimization of structural parameters to design an optimal coating thickness. This strategy ensures both superior thermal protection and extended service life. The intelligent temperature-sensing TBCs were fabricated using atmospheric plasma spraying and magnetron sputtering, followed by comprehensive characterization. To validate the performance of the intelligent temperature-sensing TBCs, static tests were conducted in a muffle furnace. The results demonstrated that the sensors exhibit excellent repeatability and high-temperature durability. Furthermore, a test platform replicating the thermal shock conditions of an engine environment was developed. This platform confirmed that the intelligent temperature-sensing TBCs are capable of accurately measuring the internal temperature gradient within the coating under engine-like conditions, offering a novel methodology for engine monitoring and diagnostics.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 1042-1052"},"PeriodicalIF":9.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ge Bai , Chunhua Niu , Xuexue Liang , Lan Li , Yulong Feng , Zhong Wei , Kai Chen , Klemen Bohinc , Xuhong Guo
{"title":"Engineering Robust Silver-Decorated calcium peroxide Nano-Antibacterial Platforms for chemodynamic enhanced sterilization","authors":"Ge Bai , Chunhua Niu , Xuexue Liang , Lan Li , Yulong Feng , Zhong Wei , Kai Chen , Klemen Bohinc , Xuhong Guo","doi":"10.1016/j.jcis.2024.11.040","DOIUrl":"10.1016/j.jcis.2024.11.040","url":null,"abstract":"<div><div>Calcium peroxide (CaO<sub>2</sub>) is commonly used as a hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) donor to eliminate bacterial infections. However, the rapid dissociation of CaO<sub>2</sub> and the explosive release of H<sub>2</sub>O<sub>2</sub> have limited the development of CaO<sub>2</sub> in the antibacterial field. Therefore, a series of silver nanoparticles (AgNPs) functionalized bacteria-triggered smart hydrogels (CSA-H) that integrate sustained release of nanoparticles and localized chemodynamic sterilization were constructed. The pH-responsive hydrogel formed through the Schiff base reaction enables the responsive release of CaO<sub>2</sub> nanoparticles while simultaneously regulating the concentration of H<sub>2</sub>O<sub>2</sub> within the bacterial infection microenvironment. AgNPs are capable of reacting with H<sub>2</sub>O<sub>2</sub> under mildly acidic conditions to produce hydroxyl radicals with enhanced antimicrobial activity. The antimicrobial results demonstrated that AgNPs functionalized silicon dioxide-coated calcium peroxide (CaO<sub>2</sub>@SiO<sub>2</sub>/AgNPs) nanoparticles exhibited enhanced bactericidal activity compared to AgNPs or CaO<sub>2</sub> alone. Furthermore, CSA-H hydrogels exhibited significant antibacterial activity against <em>S. aureus</em> and <em>E. coli</em> under the dual effect of AgNPs and pH-driven Fenton-like reactions. This chemodynamic antibacterial platform is environmentally responsive and provides a promising strategy for creating multifunctional hydrogels loaded with nano-enzymes, thus advancing the development of AgNPs in chemodynamic-antibacterial related applications.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 684-695"},"PeriodicalIF":9.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weiyin Su , Hongren Liu , Zeyu Chang , Wen Li , Shengkun Yan , Jie Li , Fanglan Geng , Xi Yao , Mingguo Ma , Kun Wang , Jianxin Jiang
{"title":"Sustainable passive radiation cooling transparent film for mobile phone protective screens","authors":"Weiyin Su , Hongren Liu , Zeyu Chang , Wen Li , Shengkun Yan , Jie Li , Fanglan Geng , Xi Yao , Mingguo Ma , Kun Wang , Jianxin Jiang","doi":"10.1016/j.jcis.2024.11.043","DOIUrl":"10.1016/j.jcis.2024.11.043","url":null,"abstract":"<div><div>Passive daytime radiative cooling (PDRC) is a promising approach to address energy, environmental, and safety issues caused by global warming, with high emissivity in a transparent atmospheric window and high reflectivity in the solar spectrum. However, most demonstrations of PDRC rely mainly on complex and expensive spectral selective nanophotonic structures, requiring specialized photonic structures that are both expensive and difficult to obtain. The superiorities of low-cost, abundant resources, renewability, and high value-added biomass resources prompt <em>Gleditsia</em> sinensis polysaccharides (GSP) to be used in thermal emission materials to explore further the characteristics of regulating object temperature within a specific range without any external energy consumption. The three-layer thermal emission film (PDMS<sub>3</sub>PG<sub>3/t4</sub>) obtained by the scalable scraping method has high transparency, hydrophobicity (114.2°), and super flexibility. The spectral variations of non-selective PDMS<sub>3</sub>PG<sub>3/t4</sub> (1.0 wt% GSP, 800 μm thickness) in the 3–5 μm and 8–13 μm waveband ranges were discussed in detail, and high emissivities of 69.1 % and 92.2 % were obtained, respectively. PDMS<sub>3</sub>PG<sub>3/t4</sub> was appointed a mobile phone screen film and experimented with a 4.9 °C average temperature difference below ambient temperature, materializing prime PDRC and desiring to broaden the passive cooling technology and reduce the global energy burden.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 859-867"},"PeriodicalIF":9.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingyan Liu , Kaili Wu , Chaogang Jia , Youzhou He , Yirui Qiu , Yuyu Fang , Hao Ma , Song Wang , Siping Wei , Fan Dong
{"title":"Fabrication of core–shell nanostructure via novel ligand-defect reassembly strategy for efficient photocatalytic hydrogen evolution and NO removal","authors":"Xingyan Liu , Kaili Wu , Chaogang Jia , Youzhou He , Yirui Qiu , Yuyu Fang , Hao Ma , Song Wang , Siping Wei , Fan Dong","doi":"10.1016/j.jcis.2024.11.035","DOIUrl":"10.1016/j.jcis.2024.11.035","url":null,"abstract":"<div><div>The core–shell structure often exhibits unique properties, resulting in superior physical and chemical performance distinct from individual component in the field of photocatalysis. However, traditional prepared methods such as template synthesis and layer-by-layer self-assembly are relatively complex. Therefore, it is necessary to explore an efficient and expedient approach. Here, we have proposed a convenient method to gradually destroy the terephthalic acid (BDC) of MIL-125 from the outer to inner layers through hydrothermal stirring, followed by reassembling with photosensitive 2-amino-terephthalic acid (BDC-NH<sub>2</sub>) into the exposed Ti-oxo clusters left by the BDC to create photocatalysts featuring a core–shell configuration. The special core–shell sample with the analogous mixture of MIL-125 and MIL-125-NH<sub>2</sub> function as a high-performance dual-functional photocatalyst for hydrogen generation and NO elimination. The optimal core–shell material (M-125-45-N) exhibits an outstanding photocatalytic hydrogen production rate of 3.74 mmol·g<sup>−1</sup>·h<sup>−1</sup> and an excellent photocatalytic NO removal rate of 70.15 %. The apparent quantum yield (AQY) value and solar-to-hydrogen energy conversion efficiency (STH) at specific wavelengths are also investigated. The Density functional theory (DFT) calculation, <em>In-situ</em> Fourier transform infrared (<em>In-situ</em> FT-IR) and Electron spin resonance (ESR) have suggested that the enhanced photocatalytic activity of optimal core–shell material arised from its stronger adsorption capacity towards reactants, promoting the production of reactive oxygen species (ROS) conducive to photocatalytic reactions. This study represents the first investigation of a dual functional core–shell MOFs formed <em>via</em> ligand-defect reassembly, showcasing the excellent efficacy in photocatalytic hydrogen evolution and NO removal, which contributes to the feasible development of novel dual-functional photocatalysts with core–shell structures.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 948-964"},"PeriodicalIF":9.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}