{"title":"Session Introduction: Digital health technology data in biocomputing: Research efforts and considerations for expanding access (PSB2024).","authors":"Michelle Holko, Chris Lunt, Jessilyn Dunn","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Data from digital health technologies (DHT), including wearable sensors like Apple Watch, Whoop, Oura Ring, and Fitbit, are increasingly being used in biomedical research. Research and development of DHT-related devices, platforms, and applications is happening rapidly and with significant private-sector involvement with new biotech companies and large tech companies (e.g. Google, Apple, Amazon, Uber) investing heavily in technologies to improve human health. Many academic institutions are building capabilities related to DHT research, often in cross-sector collaboration with technology companies and other organizations with the goal of generating clinically meaningful evidence to improve patient care, to identify users at an earlier stage of disease presentation, and to support health preservation and disease prevention. Large research consortia, cross-sector partnerships, and individual research labs are all represented in the current corpus of published studies. Some of the large research studies, like NIH's All of Us Research Program, make data sets from wearable sensors available to the research community, while the vast majority of data from wearable sensors and other DHTs are held by private sector organizations and are not readily available to the research community. As data are unlocked from the private sector and made available to the academic research community, there is an opportunity to develop innovative analytics and methods through expanded access. This is the second year for this Session which solicited research results leveraging digital health technologies, including wearable sensor data, describing novel analytical methods, and issues related to diversity, equity, inclusion (DEI) of the research, data, and the community of researchers working in this area. We particularly encouraged submissions describing opportunities for expanding and democratizing academic research using data from wearable sensors and related digital health technologies.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"163-169"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandro Lozano, Scott L Fleming, Chia-Chun Chiang, Nigam Shah
{"title":"Clinfo.ai: An Open-Source Retrieval-Augmented Large Language Model System for Answering Medical Questions using Scientific Literature.","authors":"Alejandro Lozano, Scott L Fleming, Chia-Chun Chiang, Nigam Shah","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The quickly-expanding nature of published medical literature makes it challenging for clinicians and researchers to keep up with and summarize recent, relevant findings in a timely manner. While several closed-source summarization tools based on large language models (LLMs) now exist, rigorous and systematic evaluations of their outputs are lacking. Furthermore, there is a paucity of high-quality datasets and appropriate benchmark tasks with which to evaluate these tools. We address these issues with four contributions: we release Clinfo.ai, an open-source WebApp that answers clinical questions based on dynamically retrieved scientific literature; we specify an information retrieval and abstractive summarization task to evaluate the performance of such retrieval-augmented LLM systems; we release a dataset of 200 questions and corresponding answers derived from published systematic reviews, which we name PubMed Retrieval and Synthesis (PubMedRS-200); and report benchmark results for Clinfo.ai and other publicly available OpenQA systems on PubMedRS-200.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"8-23"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brooke L Fridley, Simon Vandekar, Inna Chervoneva, Julia Wrobel, Siyuan Ma
{"title":"Statistical analysis of single-cell protein data.","authors":"Brooke L Fridley, Simon Vandekar, Inna Chervoneva, Julia Wrobel, Siyuan Ma","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Immune modulation is considered a hallmark of cancer initiation and progression, with immune cell density being consistently associated with clinical outcomes of individuals with cancer. Multiplex immunofluorescence (mIF) microscopy combined with automated image analysis is a novel and increasingly used technique that allows for the assessment and visualization of the tumor microenvironment (TME). Recently, application of this new technology to tissue microarrays (TMAs) or whole tissue sections from large cancer studies has been used to characterize different cell populations in the TME with enhanced reproducibility and accuracy. Generally, mIF data has been used to examine the presence and abundance of immune cells in the tumor and stroma compartments; however, this aggregate measure assumes uniform patterns of immune cells throughout the TME and overlooks spatial heterogeneity. Recently, the spatial contexture of the TME has been explored with a variety of statistical methods. In this PSB workshop, speakers will present some of the state-of-the-art statistical methods for assessing the TIME from mIF data.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"654-660"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Milos Vukadinovic, Gauri Renjith, Victoria Yuan, Alan Kwan, Susan C Cheng, Debiao Li, Shoa L Clarke, David Ouyang
{"title":"Impact of Measurement Noise on Genetic Association Studies of Cardiac Function.","authors":"Milos Vukadinovic, Gauri Renjith, Victoria Yuan, Alan Kwan, Susan C Cheng, Debiao Li, Shoa L Clarke, David Ouyang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Recent research has effectively used quantitative traits from imaging to boost the capabilities of genome-wide association studies (GWAS), providing further understanding of disease biology and various traits. However, it's important to note that phenotyping inherently carries measurement error and noise that could influence subsequent genetic analyses. The study focused on left ventricular ejection fraction (LVEF), a vital yet potentially inaccurate quantitative measurement, to investigate how imprecision in phenotype measurement affects genetic studies. Several methods of acquiring LVEF, along with simulating measurement noise, were assessed for their effects on ensuing genetic analyses. The results showed that by introducing just 7.9% of measurement noise, all genetic associations in an LVEF GWAS with almost forty thousand individuals could be eliminated. Moreover, a 1% increase in mean absolute error (MAE) in LVEF had an effect equivalent to a 10% reduction in the sample size of the cohort on the power of GWAS. Therefore, enhancing the accuracy of phenotyping is crucial to maximize the effectiveness of genome-wide association studies.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"134-147"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrinal Mishra, Layan Nahlawi, Yizhen Zhong, Tanima De, Guang Yang, Cristina Alarcon, Minoli A Perera
{"title":"LA-GEM: imputation of gene expression with incorporation of Local Ancestry.","authors":"Mrinal Mishra, Layan Nahlawi, Yizhen Zhong, Tanima De, Guang Yang, Cristina Alarcon, Minoli A Perera","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Gene imputation and TWAS have become a staple in the genomics medicine discovery space; helping to identify genes whose regulation effects may contribute to disease susceptibility. However, the cohorts on which these methods are built are overwhelmingly of European Ancestry. This means that the unique regulatory variation that exist in non-European populations, specifically African Ancestry populations, may not be included in the current models. Moreover, African Americans are an admixed population, with a mix of European and African segments within their genome. No gene imputation model thus far has incorporated the effect of local ancestry (LA) on gene expression imputation. As such, we created LA-GEM which was trained and tested on a cohort of 60 African American hepatocyte primary cultures. Uniquely, LA-GEM include local ancestry inference in its prediction of gene expression. We compared the performance of LA-GEM to PrediXcan trained the same dataset (with no inclusion of local ancestry) We were able to reliably predict the expression of 2559 genes (1326 in LA-GEM and 1236 in PrediXcan). Of these, 546 genes were unique to LA-GEM, including the CYP3A5 gene which is critical to drug metabolism. We conducted TWAS analysis on two African American clinical cohorts with pharmacogenomics phenotypic information to identity novel gene associations. In our IWPC warfarin cohort, we identified 17 transcriptome-wide significant hits. No gene reached are prespecified significance level in the clopidogrel cohort. We did see suggestive association with RAS3A to P2RY12 Reactivity Units (PRU), a clinical measure of response to anti-platelet therapy. This method demonstrated the need for the incorporation of LA into study in admixed populations.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"341-358"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daphne O Martschenko, Nicole Martinez-Martin, Meghan Halley
{"title":"Practical Approaches to Enhancing Fairness, Social Responsibility and the Inclusion of Diverse Viewpoints in Biomedicine.","authors":"Daphne O Martschenko, Nicole Martinez-Martin, Meghan Halley","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The following sections are included:Workshop DescriptionLearning ObjectivesPresenter InformationAbout the Workshop OrganizersPresentationsSpeaker Presentations.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"645-649"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Risk prediction: Methods, Challenges, and Opportunities.","authors":"Ruowang Li, Rui Duan, Lifang He, Jason H Moore","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The following sections are included:Introduction to the workshopWorkshop Presenters.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"650-653"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Megan M Shuey, Jacklyn N Hellwege, Nikhil Khankari, Marijana Vujkovic, Todd L Edwards
{"title":"Session Introduction: Drug-repurposing and discovery in the era of \"big\" real-world data: how the incorporation of observational data, genetics, and other -omic technologies can move us forward.","authors":"Megan M Shuey, Jacklyn N Hellwege, Nikhil Khankari, Marijana Vujkovic, Todd L Edwards","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This PSB 2024 session discusses the many broad biological, computational, and statistical approaches currently being used for therapeutic drug target identification and repurposing of existing treatments. Drug repurposing efforts have the potential to dramatically improve the treatment landscape by more rapidly identifying drug targets and alternative strategies for untreated or poorly managed diseases. The overarching theme for this session is the use and integration of real-world data to identify drug-disease pairs with potential therapeutic use. These drug-disease pairs may be identified through genomic, proteomic, biomarkers, protein interaction analyses, electronic health records, and chemical profiling. Taken together, this session combines novel applications of methods and innovative modeling strategies with diverse real-world data to suggest new pharmaceutical treatments for human diseases.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"226-231"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"intCC: An efficient weighted integrative consensus clustering of multimodal data.","authors":"Can Huang, Pei Fen Kuan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>High throughput profiling of multiomics data provides a valuable resource to better understand the complex human disease such as cancer and to potentially uncover new subtypes. Integrative clustering has emerged as a powerful unsupervised learning framework for subtype discovery. In this paper, we propose an efficient weighted integrative clustering called intCC by combining ensemble method, consensus clustering and kernel learning integrative clustering. We illustrate that intCC can accurately uncover the latent cluster structures via extensive simulation studies and a case study on the TCGA pan cancer datasets. An R package intCC implementing our proposed method is available at https://github.com/candsj/intCC.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"627-640"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KombOver: Efficient k-core and K-truss based characterization of perturbations within the human gut microbiome.","authors":"Nicolae Sapoval, Marko Tanevski, Todd J Treangen","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The microbes present in the human gastrointestinal tract are regularly linked to human health and disease outcomes. Thanks to technological and methodological advances in recent years, metagenomic sequencing data, and computational methods designed to analyze metagenomic data, have contributed to improved understanding of the link between the human gut microbiome and disease. However, while numerous methods have been recently developed to extract quantitative and qualitative results from host-associated microbiome data, improved computational tools are still needed to track microbiome dynamics with short-read sequencing data. Previously we have proposed KOMB as a de novo tool for identifying copy number variations in metagenomes for characterizing microbial genome dynamics in response to perturbations. In this work, we present KombOver (KO), which includes four key contributions with respect to our previous work: (i) it scales to large microbiome study cohorts, (ii) it includes both k-core and K-truss based analysis, (iii) we provide the foundation of a theoretical understanding of the relation between various graph-based metagenome representations, and (iv) we provide an improved user experience with easier-to-run code and more descriptive outputs/results. To highlight the aforementioned benefits, we applied KO to nearly 1000 human microbiome samples, requiring less than 10 minutes and 10 GB RAM per sample to process these data. Furthermore, we highlight how graph-based approaches such as k-core and K-truss can be informative for pinpointing microbial community dynamics within a myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) cohort. KO is open source and available for download/use at: https://github.com/treangenlab/komb.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"506-520"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}