利用可解释的机器学习理解 TCR T 细胞基因敲除行为。

Q2 Computer Science
Marcus Blennemann, Archit Verma, Stefanie Bachl, Julia Carnevale, Barbara E Engelhardt
{"title":"利用可解释的机器学习理解 TCR T 细胞基因敲除行为。","authors":"Marcus Blennemann, Archit Verma, Stefanie Bachl, Julia Carnevale, Barbara E Engelhardt","doi":"10.1142/9789819807024_0028","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic perturbation of T cell receptor (TCR) T cells is a promising method to unlock better TCR T cell performance to create more powerful cancer immunotherapies, but understanding the changes to T cell behavior induced by genetic perturbations remains a challenge. Prior studies have evaluated the effect of different genetic modifications with cytokine production and metabolic activity assays. Live-cell imaging is an inexpensive and robust approach to capture TCR T cell responses to cancer. Most methods to quantify T cell responses in live-cell imaging data use simple approaches to count T cells and cancer cells across time, effectively quantifying how much space in the 2D well each cell type covers, leaving actionable information unexplored. In this study, we characterize changes in TCR T cell's interactions with cancer cells from live-cell imaging data using explainable artificial intelligence (AI). We train convolutional neural networks to distinguish behaviors in TCR T cell with CRISPR knock outs of CUL5, RASA2, and a safe harbor control knockout. We use explainable AI to identify specific interaction types that define different knock-out conditions. We find that T cell and cancer cell coverage is a strong marker of TCR T cell modification when comparing similar experimental time points, but differences in cell aggregation characterize CUL5KO and RASA2KO behavior across all time points. Our pipeline for discovery in live-cell imaging data can be used for characterizing complex behaviors in arbitrary live-cell imaging datasets, and we describe best practices for this goal.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"382-393"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding TCR T cell knockout behavior using interpretable machine learning.\",\"authors\":\"Marcus Blennemann, Archit Verma, Stefanie Bachl, Julia Carnevale, Barbara E Engelhardt\",\"doi\":\"10.1142/9789819807024_0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic perturbation of T cell receptor (TCR) T cells is a promising method to unlock better TCR T cell performance to create more powerful cancer immunotherapies, but understanding the changes to T cell behavior induced by genetic perturbations remains a challenge. Prior studies have evaluated the effect of different genetic modifications with cytokine production and metabolic activity assays. Live-cell imaging is an inexpensive and robust approach to capture TCR T cell responses to cancer. Most methods to quantify T cell responses in live-cell imaging data use simple approaches to count T cells and cancer cells across time, effectively quantifying how much space in the 2D well each cell type covers, leaving actionable information unexplored. In this study, we characterize changes in TCR T cell's interactions with cancer cells from live-cell imaging data using explainable artificial intelligence (AI). We train convolutional neural networks to distinguish behaviors in TCR T cell with CRISPR knock outs of CUL5, RASA2, and a safe harbor control knockout. We use explainable AI to identify specific interaction types that define different knock-out conditions. We find that T cell and cancer cell coverage is a strong marker of TCR T cell modification when comparing similar experimental time points, but differences in cell aggregation characterize CUL5KO and RASA2KO behavior across all time points. Our pipeline for discovery in live-cell imaging data can be used for characterizing complex behaviors in arbitrary live-cell imaging datasets, and we describe best practices for this goal.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"30 \",\"pages\":\"382-393\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789819807024_0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789819807024_0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

T细胞受体(TCR) T细胞的遗传扰动是一种很有前途的方法,可以解锁更好的TCR T细胞性能,从而创造更强大的癌症免疫疗法,但理解遗传扰动诱导的T细胞行为变化仍然是一个挑战。先前的研究通过细胞因子产生和代谢活性分析评估了不同基因修饰的影响。活细胞成像是一种廉价而可靠的方法来捕捉TCR T细胞对癌症的反应。大多数量化活细胞成像数据中T细胞反应的方法使用简单的方法来计数T细胞和癌细胞,有效地量化每种细胞类型在2D井中覆盖的空间,留下未探索的可操作信息。在这项研究中,我们利用可解释的人工智能(AI)从活细胞成像数据中描述了TCR T细胞与癌细胞相互作用的变化。我们训练卷积神经网络,通过CRISPR敲除CUL5、RASA2和安全港控制基因敲除来区分TCR T细胞中的行为。我们使用可解释的AI来识别定义不同淘汰条件的特定交互类型。我们发现,在比较相似的实验时间点时,T细胞和癌细胞覆盖是TCR T细胞修饰的一个强有力的标志,但细胞聚集的差异表征了CUL5KO和RASA2KO在所有时间点的行为。我们在活细胞成像数据中的发现管道可用于表征任意活细胞成像数据集中的复杂行为,我们描述了实现这一目标的最佳实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding TCR T cell knockout behavior using interpretable machine learning.

Genetic perturbation of T cell receptor (TCR) T cells is a promising method to unlock better TCR T cell performance to create more powerful cancer immunotherapies, but understanding the changes to T cell behavior induced by genetic perturbations remains a challenge. Prior studies have evaluated the effect of different genetic modifications with cytokine production and metabolic activity assays. Live-cell imaging is an inexpensive and robust approach to capture TCR T cell responses to cancer. Most methods to quantify T cell responses in live-cell imaging data use simple approaches to count T cells and cancer cells across time, effectively quantifying how much space in the 2D well each cell type covers, leaving actionable information unexplored. In this study, we characterize changes in TCR T cell's interactions with cancer cells from live-cell imaging data using explainable artificial intelligence (AI). We train convolutional neural networks to distinguish behaviors in TCR T cell with CRISPR knock outs of CUL5, RASA2, and a safe harbor control knockout. We use explainable AI to identify specific interaction types that define different knock-out conditions. We find that T cell and cancer cell coverage is a strong marker of TCR T cell modification when comparing similar experimental time points, but differences in cell aggregation characterize CUL5KO and RASA2KO behavior across all time points. Our pipeline for discovery in live-cell imaging data can be used for characterizing complex behaviors in arbitrary live-cell imaging datasets, and we describe best practices for this goal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信