Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing最新文献

筛选
英文 中文
Biologically Enhanced Machine Learning Model to uncover Novel Gene-Drug Targets for Alzheimer's Disease. 生物增强机器学习模型揭示阿尔茨海默病的新基因药物靶点。
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0032
Alena Orlenko, Mythreye Venkatesan, Li Shen, Marylyn D Ritchie, Zhiping Paul Wang, Tayo Obafemi-Ajayi, Jason H Moore
{"title":"Biologically Enhanced Machine Learning Model to uncover Novel Gene-Drug Targets for Alzheimer's Disease.","authors":"Alena Orlenko, Mythreye Venkatesan, Li Shen, Marylyn D Ritchie, Zhiping Paul Wang, Tayo Obafemi-Ajayi, Jason H Moore","doi":"10.1142/9789819807024_0032","DOIUrl":"10.1142/9789819807024_0032","url":null,"abstract":"<p><p>Given the complexity and multifactorial nature of Alzheimer's disease, investigating potential drug-gene targets is imperative for developing effective therapies and advancing our understanding of the underlying mechanisms driving the disease. We present an explainable ML model that integrates the role and impact of gene interactions to drive the genomic variant feature selection. The model leverages both the Alzheimer's knowledge base and the Drug-Gene interaction database (DGIdb) to identify a list of biologically plausible novel gene-drug targets for further investigation. Model validation is performed on an ethnically diverse study sample obtained from the Alzheimer's Disease Sequencing Project (ADSP), a multi-ancestry multi-cohort genomic study. To mitigate population stratification and spurious associations from ML analysis, we implemented novel data curation methods. The study outcomes include a set of possible gene targets for further functional follow-up and drug repurposing.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"441-456"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying DNA methylation sites affecting drug response using electronic health record-derived GWAS summary statistics. 使用电子健康记录衍生的GWAS汇总统计确定影响药物反应的DNA甲基化位点。
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0033
Delaney A Smith, Stephanie A Arteaga, Marie C Sadler, Russ B Altman
{"title":"Identifying DNA methylation sites affecting drug response using electronic health record-derived GWAS summary statistics.","authors":"Delaney A Smith, Stephanie A Arteaga, Marie C Sadler, Russ B Altman","doi":"10.1142/9789819807024_0033","DOIUrl":"10.1142/9789819807024_0033","url":null,"abstract":"<p><p>Adverse drug responses (ADRs) result in over 7,000 deaths annually. Pharmacogenomic studies have shown that many ADRs are partially attributable to genetics. However, emerging data suggest that epigenetic mechanisms, such as DNA methylation (DNAm) also contribute to this variance. Understanding the impact of DNA methylation on drug response may minimize ADRs and improve the personalization of drug regimens. In this work, we identify DNA methylation sites that likely impact drug response phenotypes for anticoagulant and cardiometabolic drugs. We use instrumental variable analysis to integrate genome-wide association study (GWAS) summary statistics derived from electronic health records (EHRs) within the U.K. Biobank (UKBB) with methylation quantitative trait loci (mQTL) data from the Genetics of DNA Methylation Consortium (GoDMC). This approach allows us to achieve a robust sample size using the largest publicly available pharmacogenomic GWAS. For warfarin, we find 71 DNAm sites. Of those, 8 are near the gene VKORC1 and 48 are on chromosome 6 near the human leukocyte antigen (HLA) gene family. We also find 2 warfarin DNAm sites near the genes CYP2C9 and CYP2C19. For statins, we identify 17 DNAm sites. Eight are near the APOB gene, which encodes a carrier protein for low-density lipoprotein cholesterol (LDL-C). We find no novel significant epigenetic results for metformin.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"457-472"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities and Pitfalls with Large Language Models for Biomedical Annotation. 生物医学注释大型语言模型的机遇与陷阱。
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0052
Cecilia Arighi, Jin-Dong Kim, Zhiyong Lu, Fabio Rinaldi
{"title":"Opportunities and Pitfalls with Large Language Models for Biomedical Annotation.","authors":"Cecilia Arighi, Jin-Dong Kim, Zhiyong Lu, Fabio Rinaldi","doi":"10.1142/9789819807024_0052","DOIUrl":"10.1142/9789819807024_0052","url":null,"abstract":"<p><p>Large language models (LLMs) and biomedical annotations have a symbiotic relationship. LLMs rely on high-quality annotations for training and/or fine-tuning for specific biomedical tasks. These annotations are traditionally generated through expensive and time-consuming human curation. Meanwhile LLMs can also be used to accelerate the process of curation, thus simplifying the process, and potentially creating a virtuous feedback loop. However, their use also introduces new limitations and risks, which are as important to consider as the opportunities they offer. In this workshop, we will review the process that has led to the current rise of LLMs in several fields, and in particular in biomedicine, and discuss specifically the opportunities and pitfalls when they are applied to biomedical annotation and curation.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"706-710"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-modal Imaging-based Pseudotime Analysis of Alzheimer progression. 基于多模态成像的阿尔茨海默病进展伪时间分析
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0047
Bing He, Shu Zhang, Shannon L Risacher, Andrew J Saykin, Jingwen Yan
{"title":"Multi-modal Imaging-based Pseudotime Analysis of Alzheimer progression.","authors":"Bing He, Shu Zhang, Shannon L Risacher, Andrew J Saykin, Jingwen Yan","doi":"10.1142/9789819807024_0047","DOIUrl":"10.1142/9789819807024_0047","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disorder that results in progressive cognitive decline but without any clinically validated cures so far. Understanding the progression of AD is critical for early detection and risk assessment for AD in aging individuals, thereby enabling initiation of timely intervention and improved chance of success in AD trials. Recent pseudotime approach turns cross-sectional data into \"faux\" longitudinal data to understand how a complex process evolves over time. This is critical for Alzheimer, which unfolds over the course of decades, but the collected data offers only a snapshot. In this study, we tested several state-of-the-art pseudotime approaches to model the full spectrum of AD progression. Subsequently, we evaluated and compared the pseudotime progression score derived from individual imaging modalities and multi-modalities in the ADNI cohort. Our results showed that most existing pseudotime analysis tools do not generalize well to the imaging data, with either flipped progression score or poor separation of diagnosis groups. This is likely due to the underlying assumptions that only stand for single cell data. From the only tool with promising results, it was observed that all pseudotime, derived from either single imaging modalities or multi-modalities, captures the progressiveness of diagnosis groups. Pseudotime from multi-modality, but not the single modalities, confirmed the hypothetical temporal order of imaging phenotypes. In addition, we found that multi-modal pseudotime is mostly driven by amyloid and tau imaging, suggesting their continuous changes along the full spectrum of AD progression.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"664-674"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polygenic risk scores for cardiometabolic traits demonstrate importance of ancestry for predictive precision medicine. 心脏代谢特征的多基因风险评分显示了祖先对于预测性精准医疗的重要性。
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0056
Rachel L Kember, Shefali S Verma, Anurag Verma, Brenda Xiao, Anastasia Lucas, Colleen M Kripke, Renae Judy, Jinbo Chen, Scott M Damrauer, Daniel J Rader, Marylyn D Ritchie
{"title":"Polygenic risk scores for cardiometabolic traits demonstrate importance of ancestry for predictive precision medicine.","authors":"Rachel L Kember, Shefali S Verma, Anurag Verma, Brenda Xiao, Anastasia Lucas, Colleen M Kripke, Renae Judy, Jinbo Chen, Scott M Damrauer, Daniel J Rader, Marylyn D Ritchie","doi":"10.1142/9789819807024_0056","DOIUrl":"10.1142/9789819807024_0056","url":null,"abstract":"<p><p>Polygenic risk scores (PRS) have predominantly been derived from genome-wide association studies (GWAS) conducted in European ancestry (EUR) individuals. In this study, we present an in-depth evaluation of PRS based on multi-ancestry GWAS for five cardiometabolic phenotypes in the Penn Medicine BioBank (PMBB) followed by a phenome-wide association study (PheWAS). We examine the PRS performance across all individuals and separately in African ancestry (AFR) and EUR ancestry groups. For AFR individuals, PRS derived using the multi-ancestry LD panel showed a higher effect size for four out of five PRSs (DBP, SBP, T2D, and BMI) than those derived from the AFR LD panel. In contrast, for EUR individuals, the multi-ancestry LD panel PRS demonstrated a higher effect size for two out of five PRSs (SBP and T2D) compared to the EUR LD panel. These findings underscore the potential benefits of utilizing a multi-ancestry LD panel for PRS derivation in diverse genetic backgrounds and demonstrate overall robustness in all individuals. Our results also revealed significant associations between PRS and various phenotypic categories. For instance, CAD PRS was linked with 18 phenotypes in AFR and 82 in EUR, while T2D PRS correlated with 84 phenotypes in AFR and 78 in EUR. Notably, associations like hyperlipidemia, renal failure, atrial fibrillation, coronary atherosclerosis, obesity, and hypertension were observed across different PRSs in both AFR and EUR groups, with varying effect sizes and significance levels. However, in AFR individuals, the strength and number of PRS associations with other phenotypes were generally reduced compared to EUR individuals. Our study underscores the need for future research to prioritize 1) conducting GWAS in diverse ancestry groups and 2) creating a cosmopolitan PRS methodology that is universally applicable across all genetic backgrounds. Such advances will foster a more equitable and personalized approach to precision medicine.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"748-765"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CHARTING THE EVOLUTION AND TRANSFORMATIVE IMPACT OF THE PACIFIC SYMPOSIUM ON BIOCOMPUTING THROUGH A 30-YEAR RETROSPECTIVE ANALYSIS OF COLLABORATIVE NETWORKS AND THEMES USING MODERN COMPUTATIONAL TOOLS. 通过对使用现代计算工具的协作网络和主题的30年回顾性分析,绘制太平洋生物计算研讨会的演变和变革性影响。
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0002
Leah Zhang, Sameeksha Garg, Edward Zhang, Sean McOsker, Carly Bobak, Kristine Giffin, Brock Christensen, Joshua Levy
{"title":"CHARTING THE EVOLUTION AND TRANSFORMATIVE IMPACT OF THE PACIFIC SYMPOSIUM ON BIOCOMPUTING THROUGH A 30-YEAR RETROSPECTIVE ANALYSIS OF COLLABORATIVE NETWORKS AND THEMES USING MODERN COMPUTATIONAL TOOLS.","authors":"Leah Zhang, Sameeksha Garg, Edward Zhang, Sean McOsker, Carly Bobak, Kristine Giffin, Brock Christensen, Joshua Levy","doi":"10.1142/9789819807024_0002","DOIUrl":"10.1142/9789819807024_0002","url":null,"abstract":"<p><p>Founded nearly 30 years ago, the Pacific Symposium on Biocomputing (PSB) has continually promoted collaborative research in computational biology, annually highlighting emergent themes that reflect the expanding interdisciplinary nature of the field. This study aimed to explore the collaborative and thematic dynamics at PSB using topic modeling and network analysis methods. We identified 14 central topics that have characterized the discourse at PSB over the past three decades. Our findings demonstrate significant trends in topic relevance, with a growing emphasis on machine learning and integrative analyses. We observed not only an expanding nexus of collaboration but also PSB's crucial role in fostering interdisciplinary collaborations. It remains unclear, however, whether the shift towards interdisciplinarity was driven by the conference itself, external academic trends, or broader societal shifts towards integrated research approaches. Future applications of next-generation analytical methods may offer deeper insights into these dynamics. Additionally, we have developed a web application that leverages retrieval augmented generation and large language models, enabling users to efficiently explore past PSB proceedings.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"16-32"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Differential Impact of Psychosocial Factors by Patient Characteristics and Demographics on Veteran Suicide Risk Through Machine Learning Extraction of Cross-Modal Interactions. 通过跨模式交互的机器学习提取,研究患者特征和人口统计学中的社会心理因素对退伍军人自杀风险的不同影响。
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0013
Joshua Levy, Monica Dimambro, Alos Diallo, Jiang Gui, Brian Shiner, Maxwell Levis
{"title":"Investigating the Differential Impact of Psychosocial Factors by Patient Characteristics and Demographics on Veteran Suicide Risk Through Machine Learning Extraction of Cross-Modal Interactions.","authors":"Joshua Levy, Monica Dimambro, Alos Diallo, Jiang Gui, Brian Shiner, Maxwell Levis","doi":"10.1142/9789819807024_0013","DOIUrl":"10.1142/9789819807024_0013","url":null,"abstract":"<p><p>Accurate prediction of suicide risk is crucial for identifying patients with elevated risk burden, helping ensure these patients receive targeted care. The US Department of Veteran Affairs' suicide prediction model primarily leverages structured electronic health records (EHR) data. This approach largely overlooks unstructured EHR, a data format that could be utilized to enhance predictive accuracy. This study aims to enhance suicide risk models' predictive accuracy by developing a model that incorporates both structured EHR predictors and semantic NLP-derived variables from unstructured EHR. XGBoost models were fit to predict suicide risk- the interactions identified by the model were extracted using SHAP, validated using logistic regression models, added to a ridge regression model, which was subsequently compared to a ridge regression approach without the use of interactions. By introducing a selection parameter, α, to balance the influence of structured (α=1) and unstructured (α=0) data, we found that intermediate α values achieved optimal performance across various risk strata, improved model performance of the ridge regression approach and uncovered significant cross-modal interactions between psychosocial constructs and patient characteristics. These interactions highlight how psychosocial risk factors are influenced by individual patient contexts, potentially informing improved risk prediction methods and personalized interventions. Our findings underscore the importance of incorporating nuanced narrative data into predictive models and set the stage for future research that will expand the use of advanced machine learning techniques, including deep learning, to further refine suicide risk prediction methods.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"167-184"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Session Introduction: Overcoming health disparities in precision medicine: Intersectional approaches in precision medicine. 会议简介:克服精准医学中的健康差距:精准医疗中的交叉方法。
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0018
Francisco M De La Vega, Kathleen C Barnes, Harris Bland, Todd Edwards, Keolu Fox, Alexander Ioannidis, Eimear Kenny, Rasika A Mathias, Bogdan Pasaniuc, Jada Benn Torres, Digna R Velez Edwards
{"title":"Session Introduction: Overcoming health disparities in precision medicine: Intersectional approaches in precision medicine.","authors":"Francisco M De La Vega, Kathleen C Barnes, Harris Bland, Todd Edwards, Keolu Fox, Alexander Ioannidis, Eimear Kenny, Rasika A Mathias, Bogdan Pasaniuc, Jada Benn Torres, Digna R Velez Edwards","doi":"10.1142/9789819807024_0018","DOIUrl":"10.1142/9789819807024_0018","url":null,"abstract":"<p><p>The following sections are included: Overview, Advancing multi-ancestry genetic research, Integrating social determinants of health to enhance genetic risk models, Methods to detect and mitigate disparities, Addressing Disparities in Adverse Drug Reactions, Conclusion, Acknowledgments,References.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"247-250"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Session Introduction: AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface. 会议介绍:临床医学中的人工智能和机器学习:人机界面的生成和交互系统。
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0003
Fateme Nateghi Haredasht, Dokyoon Kim, Joseph D Romano, Geoff Tison, Roxana Daneshjou, Jonathan H Chen
{"title":"Session Introduction: AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface.","authors":"Fateme Nateghi Haredasht, Dokyoon Kim, Joseph D Romano, Geoff Tison, Roxana Daneshjou, Jonathan H Chen","doi":"10.1142/9789819807024_0003","DOIUrl":"10.1142/9789819807024_0003","url":null,"abstract":"<p><p>Artificial Intelligence (AI) technologies are increasingly capable of processing complex and multilayered datasets. Innovations in generative AI and deep learning have notably enhanced the extraction of insights from both unstructured texts, images, and structured data alike. These breakthroughs in AI technology have spurred a wave of research in the medical field, leading to the creation of a variety of tools aimed at improving clinical decision-making, patient monitoring, image analysis, and emergency response systems. However, thorough research is essential to fully understand the broader impact and potential consequences of deploying AI within the healthcare sector.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"33-39"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ClinValAI: A framework for developing Cloud-based infrastructures for the External Clinical Validation of AI in Medical Imaging. ClinValAI:为医学影像中人工智能的外部临床验证开发基于云的基础设施的框架。
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Pub Date : 2025-01-01 DOI: 10.1142/9789819807024_0016
Ojas A Ramwala, Kathryn P Lowry, Daniel S Hippe, Matthew P N Unrath, Matthew J Nyflot, Sean D Mooney, Christoph I Lee
{"title":"ClinValAI: A framework for developing Cloud-based infrastructures for the External Clinical Validation of AI in Medical Imaging.","authors":"Ojas A Ramwala, Kathryn P Lowry, Daniel S Hippe, Matthew P N Unrath, Matthew J Nyflot, Sean D Mooney, Christoph I Lee","doi":"10.1142/9789819807024_0016","DOIUrl":"10.1142/9789819807024_0016","url":null,"abstract":"<p><p>Artificial Intelligence (AI) algorithms showcase the potential to steer a paradigm shift in clinical medicine, especially medical imaging. Concerns associated with model generalizability and biases necessitate rigorous external validation of AI algorithms prior to their adoption into clinical workflows. To address the barriers associated with patient privacy, intellectual property, and diverse model requirements, we introduce ClinValAI, a framework for establishing robust cloud-based infrastructures to clinically validate AI algorithms in medical imaging. By featuring dedicated workflows for data ingestion, algorithm scoring, and output processing, we propose an easily customizable method to assess AI models and investigate biases. Our novel orchestration mechanism facilitates utilizing the complete potential of the cloud computing environment. ClinValAI's input auditing and standardization mechanisms ensure that inputs consistent with model prerequisites are provided to the algorithm for a streamlined validation. The scoring workflow comprises multiple steps to facilitate consistent inferencing and systematic troubleshooting. The output processing workflow helps identify and analyze samples with missing results and aggregates final outputs for downstream analysis. We demonstrate the usability of our work by evaluating a state-of-the-art breast cancer risk prediction algorithm on a large and diverse dataset of 2D screening mammograms. We perform comprehensive statistical analysis to study model calibration and evaluate performance on important factors, including breast density, age, and race, to identify latent biases. ClinValAI provides a holistic framework to validate medical imaging models and has the potential to advance the development of generalizable AI models in clinical medicine and promote health equity.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"215-228"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信