Session Introduction: AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface.

Q2 Computer Science
Fateme Nateghi Haredasht, Dokyoon Kim, Joseph D Romano, Geoff Tison, Roxana Daneshjou, Jonathan H Chen
{"title":"Session Introduction: AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface.","authors":"Fateme Nateghi Haredasht, Dokyoon Kim, Joseph D Romano, Geoff Tison, Roxana Daneshjou, Jonathan H Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) technologies are increasingly capable of processing complex and multilayered datasets. Innovations in generative AI and deep learning have notably enhanced the extraction of insights from both unstructured texts, images, and structured data alike. These breakthroughs in AI technology have spurred a wave of research in the medical field, leading to the creation of a variety of tools aimed at improving clinical decision-making, patient monitoring, image analysis, and emergency response systems. However, thorough research is essential to fully understand the broader impact and potential consequences of deploying AI within the healthcare sector.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"33-39"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) technologies are increasingly capable of processing complex and multilayered datasets. Innovations in generative AI and deep learning have notably enhanced the extraction of insights from both unstructured texts, images, and structured data alike. These breakthroughs in AI technology have spurred a wave of research in the medical field, leading to the creation of a variety of tools aimed at improving clinical decision-making, patient monitoring, image analysis, and emergency response systems. However, thorough research is essential to fully understand the broader impact and potential consequences of deploying AI within the healthcare sector.

会议介绍:临床医学中的人工智能和机器学习:人机界面的生成和交互系统。
人工智能(AI)技术处理复杂和多层数据集的能力越来越强。生成式人工智能和深度学习的创新显著增强了从非结构化文本、图像和结构化数据中提取见解的能力。人工智能技术的这些突破激发了医疗领域的一波研究浪潮,催生了旨在改善临床决策、患者监测、图像分析和应急响应系统的各种工具。然而,要充分了解在医疗保健行业部署人工智能的更广泛影响和潜在后果,进行彻底的研究至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信