评估ASD生物标志物的无监督降维技术。

Q2 Computer Science
Zachary Jacokes, Ian Adoremos, Arham Rameez Hussain, Benjamin T Newman, Kevin A Pelphrey, John Darrell Van Horn
{"title":"评估ASD生物标志物的无监督降维技术。","authors":"Zachary Jacokes, Ian Adoremos, Arham Rameez Hussain, Benjamin T Newman, Kevin A Pelphrey, John Darrell Van Horn","doi":"10.1142/9789819807024_0044","DOIUrl":null,"url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) encompasses a range of developmental disabilities marked by differences in social functioning, cognition, and behavior. Both genetic and environmental factors are known to contribute to ASD, yet the exact etiological factors remain unclear. Developing integrative models to explore the effects of gene expression on behavioral and cognitive traits attributed to ASD can uncover environmental and genetic interactions. A notable aspect of ASD research is the sex-wise diagnostic disparity: males are diagnosed more frequently than females, which suggests potential sex-specific biological influences. Investigating neuronal microstructure, particularly axonal conduction velocity offers insights into the neural basis of ASD. Developing robust models that evaluate the vast multidimensional datasets generated from genetic and microstructural processing poses significant challenges. Traditional feature selection techniques have limitations; thus, this research aims to integrate principal component analysis (PCA) with supervised machine learning algorithms to navigate the complex data space. By leveraging various neuroimaging techniques and transcriptomics data analysis methods, this methodology builds on traditional implementations of PCA to better contextualize the complex genetic and phenotypic heterogeneity linked to sex differences in ASD and pave the way for tailored interventions.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"614-630"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262183/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Dimensionality Reduction Techniques for the Assessment of ASD Biomarkers.\",\"authors\":\"Zachary Jacokes, Ian Adoremos, Arham Rameez Hussain, Benjamin T Newman, Kevin A Pelphrey, John Darrell Van Horn\",\"doi\":\"10.1142/9789819807024_0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism Spectrum Disorder (ASD) encompasses a range of developmental disabilities marked by differences in social functioning, cognition, and behavior. Both genetic and environmental factors are known to contribute to ASD, yet the exact etiological factors remain unclear. Developing integrative models to explore the effects of gene expression on behavioral and cognitive traits attributed to ASD can uncover environmental and genetic interactions. A notable aspect of ASD research is the sex-wise diagnostic disparity: males are diagnosed more frequently than females, which suggests potential sex-specific biological influences. Investigating neuronal microstructure, particularly axonal conduction velocity offers insights into the neural basis of ASD. Developing robust models that evaluate the vast multidimensional datasets generated from genetic and microstructural processing poses significant challenges. Traditional feature selection techniques have limitations; thus, this research aims to integrate principal component analysis (PCA) with supervised machine learning algorithms to navigate the complex data space. By leveraging various neuroimaging techniques and transcriptomics data analysis methods, this methodology builds on traditional implementations of PCA to better contextualize the complex genetic and phenotypic heterogeneity linked to sex differences in ASD and pave the way for tailored interventions.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"30 \",\"pages\":\"614-630\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262183/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789819807024_0044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789819807024_0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

自闭症谱系障碍(ASD)包括一系列以社会功能、认知和行为差异为特征的发育障碍。已知遗传和环境因素都有助于ASD,但确切的病因尚不清楚。开发整合模型来探索基因表达对ASD行为和认知特征的影响,可以揭示环境和遗传的相互作用。自闭症谱系障碍研究的一个值得注意的方面是性别方面的诊断差异:男性的诊断频率高于女性,这表明潜在的性别特异性生物学影响。研究神经元微观结构,特别是轴突传导速度,有助于深入了解自闭症谱系障碍的神经基础。开发健壮的模型来评估由遗传和微观结构处理产生的大量多维数据集,这构成了重大挑战。传统的特征选择技术存在局限性;因此,本研究旨在将主成分分析(PCA)与监督机器学习算法相结合,以导航复杂的数据空间。通过利用各种神经成像技术和转录组学数据分析方法,该方法建立在传统PCA实现的基础上,以更好地了解与ASD性别差异相关的复杂遗传和表型异质性,并为量身定制的干预措施铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Dimensionality Reduction Techniques for the Assessment of ASD Biomarkers.

Autism Spectrum Disorder (ASD) encompasses a range of developmental disabilities marked by differences in social functioning, cognition, and behavior. Both genetic and environmental factors are known to contribute to ASD, yet the exact etiological factors remain unclear. Developing integrative models to explore the effects of gene expression on behavioral and cognitive traits attributed to ASD can uncover environmental and genetic interactions. A notable aspect of ASD research is the sex-wise diagnostic disparity: males are diagnosed more frequently than females, which suggests potential sex-specific biological influences. Investigating neuronal microstructure, particularly axonal conduction velocity offers insights into the neural basis of ASD. Developing robust models that evaluate the vast multidimensional datasets generated from genetic and microstructural processing poses significant challenges. Traditional feature selection techniques have limitations; thus, this research aims to integrate principal component analysis (PCA) with supervised machine learning algorithms to navigate the complex data space. By leveraging various neuroimaging techniques and transcriptomics data analysis methods, this methodology builds on traditional implementations of PCA to better contextualize the complex genetic and phenotypic heterogeneity linked to sex differences in ASD and pave the way for tailored interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信