{"title":"Observer-based integral sliding mode control for sensorless PMSM drives using FPGA","authors":"N. K. Quang, Doan Quang Vinh, N. D. That, Q. Ha","doi":"10.1109/ICCAIS.2013.6720557","DOIUrl":"https://doi.org/10.1109/ICCAIS.2013.6720557","url":null,"abstract":"This paper presents the design and evaluation of an observer-based integral sliding mode controller for sensorless Permanent Magnet Synchronous Motor (PMSM) drive based on the Field Programmable Gate Array (FPGA) technology. For enhancement of robustness, a flux angle estimator using an improved sliding mode observer is proposed to estimate the current and back electromotive force (EMF) as well as to derive the flux angle. These estimated values together with the computed rotor speed of the motor are fed back for the control purpose in both the current loop and the speed loop. To increase the performance of PMSM speed control, an integral sliding mode control (ISMC) is designed with integral operation to improve steady state accuracy against parameter variations and external disturbances. The developed controller has been implemented in an FPGA-based environment and the very high speed integrated circuit-hardware description language (VHDL) is adopted to show advantages of the proposed control system. By integrating the observer-based and integral sliding mode control techniques into speed control of a PMSM drive, the system performance can be substantially enhanced while improving its cost-effectiveness and reliability. The validity of the proposed approach is verified through simulation results based on Modelsim and Simulink co-simulation method.","PeriodicalId":347974,"journal":{"name":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114543903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The oscillation behaviors in Euler discretized terminal sliding mode control sytems","authors":"Bin Wang, N. Truong, B. Brogliato, S. Khoo","doi":"10.1109/ICCAIS.2013.6720554","DOIUrl":"https://doi.org/10.1109/ICCAIS.2013.6720554","url":null,"abstract":"In this paper, the oscillation behaviors of terminal sliding mode control systems due to Euler discretization are studied. Periodic orbits are observed. Necessary and sufficient conditions for the existence of periodic orbits with a specific period are given. Simulations are presented to verify the theoretical results.","PeriodicalId":347974,"journal":{"name":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114619715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid method for 3D instrument reconstruction and tracking in laparoscopy surgery","authors":"Ching-Chun Huang, Nguyen Hung, Atul Kumar","doi":"10.1109/ICCAIS.2013.6720526","DOIUrl":"https://doi.org/10.1109/ICCAIS.2013.6720526","url":null,"abstract":"3D instrument reconstruction and tracking are critical steps in minimally invasive surgery. Nowadays, some image-based methods have been proposed. Trying to minimize the damage to human body, those systems only used one camera as the major sensor to track and reconstruct the instrument and hence lost performance. For performance improvement, an inertial measurement unit (IMU) was newly integrated in our proposed system owing to two factors: first, the IMU could be installed in the instrument without extra body damage. Second, the IMU could provide direct motion information for tracking. However, the IMU measurements are far from perfect due to the gyro and acceleration biases. Thus, we proposed to compromise the information from a camera system and an IMU system to estimate the position, velocity and direction of the instrument. An Extended Kalman Filter was finally adopted to integrate information from different sources, compensate the biases of IMU, and track the instrument in a unified framework. The results of the experiment show the effectiveness of our method compared with image-based and IMU-based methods.","PeriodicalId":347974,"journal":{"name":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114961819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Doppler radar in respiratory monitoring: Detection and analysis","authors":"Yee Siong Lee, P. Pathirana, T. Caelli, R. Evans","doi":"10.1109/ICCAIS.2013.6720558","DOIUrl":"https://doi.org/10.1109/ICCAIS.2013.6720558","url":null,"abstract":"This paper presents the preliminary results of our work in detecting respiration using Doppler Radar in the 2.7 GHz operating band. We demonstrate the capability of Doppler Radar in capturing breathing patterns under various breathing forms such as normal breathing, fast breathing, as well as different rate of inhale and exhale. From the captured signals, respiration rate was obtained using Fast Fourier Transform and validated. The proposed approach could potentially be used in number of applications involving breathing rate and breathing pattern analysis via non-contact methods.","PeriodicalId":347974,"journal":{"name":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128599493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}