HGG Advances最新文献

筛选
英文 中文
A multi-ancestry genome-wide association study identifies novel candidate loci in the RARB gene associated with hypertensive disorders of pregnancy. 一项多家系全基因组关联研究发现了与妊娠高血压疾病相关的 RARB 基因新候选位点。
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-11-22 DOI: 10.1016/j.xhgg.2024.100385
Jasmine A Mack, Adam Burkholder, Farida S Akhtari, John S House, Ulla Sovio, Gordon C S Smith, Charles P Schmitt, David C Fargo, Janet E Hall, Alison A Motsinger-Reif
{"title":"A multi-ancestry genome-wide association study identifies novel candidate loci in the RARB gene associated with hypertensive disorders of pregnancy.","authors":"Jasmine A Mack, Adam Burkholder, Farida S Akhtari, John S House, Ulla Sovio, Gordon C S Smith, Charles P Schmitt, David C Fargo, Janet E Hall, Alison A Motsinger-Reif","doi":"10.1016/j.xhgg.2024.100385","DOIUrl":"10.1016/j.xhgg.2024.100385","url":null,"abstract":"<p><p>Genetic factors related to pregnancy-related traits are understudied, especially in ancestrally diverse cohorts. To assess maternal contributions to hypertensive disorders of pregnancy (HDP), we performed a multi-ancestry genome-wide association study (GWAS) of HDP in data from the North Carolina-based Personalized Environment and Genes Study (PEGS) cohort with validation in the UK Biobank (UKBB). The GWAS revealed two maternal loci associated with HDP at the genome-wide significance level. The lead independent variants were rs114954125 on chromosome 2 (near LRP1B; odds ratio [OR] [95% confidence interval {CI}]): 2.96 [2.02-4.34]; p = 2.82 × 10<sup>-8</sup>) and rs61176331 on chromosome 3 (on RARB; OR (95% CI): 3.08 (2.12-4.48); p = 3.52 × 10<sup>-9</sup>). We validated the associations near RARB with a meta-analysis of PEGS and the UKBB. We also identified cis-expression quantitative trait loci in the candidate region associated with decreased RARB expression in macrophage cells exposed to Salmonella. Chromatin mapping in FUMA identified a significant interaction within chromosome 3's enhancer and open chromatin regions, with strong effects observed for RARB and H3P10 gene regulation in mesendoderm cells, mesenchymal stem cells, and trophoblast-like stem cells. We applied existing polygenic scores (PGS) for preeclampsia and gestational hypertension and found that the scores were significantly associated with HDP in PEGS. The findings demonstrate the power of multi-ancestry studies for genetic discovery and highlight the relationship between immune response, regulation, and HDP and the utility of PGS for risk prediction. (PEGS is registered at ClinicalTrials.gov: NCT00341237.).</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100385"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotypic findings associated with variation in elastin. 与弹性蛋白变异相关的表型结果
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-11-27 DOI: 10.1016/j.xhgg.2024.100388
Anne Justice, Melissa A Kelly, Gary Bellus, Joshua D Green, Raza Zaidi, Taylor Kerrins, Navya Josyula, Teresa R Luperchio, Beth A Kozel, Marc S Williams
{"title":"Phenotypic findings associated with variation in elastin.","authors":"Anne Justice, Melissa A Kelly, Gary Bellus, Joshua D Green, Raza Zaidi, Taylor Kerrins, Navya Josyula, Teresa R Luperchio, Beth A Kozel, Marc S Williams","doi":"10.1016/j.xhgg.2024.100388","DOIUrl":"10.1016/j.xhgg.2024.100388","url":null,"abstract":"<p><p>Variation in the elastin gene (ELN) may contribute to connective tissue disease beyond the known disease associations of supravalvar aortic stenosis and cutis laxa. Exome data from MyCode Community Health Initiative participants were analyzed for ELN rare variants (mean allele frequency <1%, not currently annotated as benign). Participants with variants of interest underwent phenotyping by dual chart review using a standardized abstraction tool. Additionally, all rare variants that met inclusion criteria were collapsed into an ELN gene burden score to perform a phenome-wide association study (PheWAS). Two hundred and ninety-six eligible participants with relevant ELN variants were identified from 184,293 MyCode participants. One hundred and three of 254 living participants (41%) met phenotypic criteria, most commonly aortic hypoplasia, arterial dilation, aneurysm, and dissection, and connective tissue abnormalities. ELN variation was significantly (p < 2.8 × 10<sup>-5</sup>) associated with \"arterial dissection\" in the PheWAS and two connective tissue Phecodes approached significance. Variation in ELN is associated with connective tissue pathology beyond classic phenotypes.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100388"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ADPRS variant disrupts ARH3 stability and subcellular localization in children with neurodegeneration and respiratory failure. ADPRS变体会破坏神经变性和呼吸衰竭患儿体内ARH3的稳定性和亚细胞定位。
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-11-22 DOI: 10.1016/j.xhgg.2024.100386
Maxwell Bannister, Sarah Bray, Anjali Aggarwal, Charles Billington, Hai Dang Nguyen
{"title":"An ADPRS variant disrupts ARH3 stability and subcellular localization in children with neurodegeneration and respiratory failure.","authors":"Maxwell Bannister, Sarah Bray, Anjali Aggarwal, Charles Billington, Hai Dang Nguyen","doi":"10.1016/j.xhgg.2024.100386","DOIUrl":"10.1016/j.xhgg.2024.100386","url":null,"abstract":"<p><p>ADP-ribosylation is a post-translational modification involving the transfer of one or more ADP-ribose units from NAD+ to target proteins. Dysregulation of ADP-ribosylation is implicated in neurodegenerative diseases. In this study, genetic testing via exome sequencing was used to identify the underlying disease in two siblings with developmental delay, seizures, progressive muscle weakness, and respiratory failure following an episodic course. This identified a novel homozygous variant in the ADPRS gene (c.545A>G, p.His182Arg) encoding the mono(ADP-ribosyl) hydrolase ARH3, confirming the diagnosis of childhood-onset neurodegeneration with stress-induced ataxia and seizures (CONDSIAS) in these two children. Mechanistically, the ARH3<sup>H182R</sup> variant affects a highly conserved residue in the active site of ARH3, leading to protein instability, degradation, and, subsequently, reduced protein expression. The ARH3<sup>H182R</sup> mutant additionally fails to localize to the nucleus, which further resulted in accumulated mono-ADP ribosylated species in cells. The children's clinical course combined with the biochemical characterization of their genetic variant develops our understanding of the pathogenic mechanisms driving CONDSIAS and highlights a critical role for ARH3-regulated ADP-ribosylation in nervous system integrity.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100386"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of methods for building polygenic scores for diverse populations. 比较为不同人群建立多基因评分的方法。
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-09-25 DOI: 10.1016/j.xhgg.2024.100355
Sophia Gunn, Xin Wang, Daniel C Posner, Kelly Cho, Jennifer E Huffman, Michael Gaziano, Peter W Wilson, Yan V Sun, Gina Peloso, Kathryn L Lunetta
{"title":"Comparison of methods for building polygenic scores for diverse populations.","authors":"Sophia Gunn, Xin Wang, Daniel C Posner, Kelly Cho, Jennifer E Huffman, Michael Gaziano, Peter W Wilson, Yan V Sun, Gina Peloso, Kathryn L Lunetta","doi":"10.1016/j.xhgg.2024.100355","DOIUrl":"10.1016/j.xhgg.2024.100355","url":null,"abstract":"<p><p>Polygenic scores (PGSs) are a promising tool for estimating individual-level genetic risk of disease based on the results of genome-wide association studies (GWASs). However, their promise has yet to be fully realized because most currently available PGSs were built with genetic data from predominantly European-ancestry populations, and PGS performance declines when scores are applied to target populations different from the populations from which they were derived. Thus, there is a great need to improve PGS performance in currently under-studied populations. In this work we leverage data from two large and diverse cohorts the Million Veterans Program (MVP) and All of Us (AoU), providing us the unique opportunity to compare methods for building PGSs for multi-ancestry populations across multiple traits. We build PGSs for five continuous traits and five binary traits using both multi-ancestry and single-ancestry approaches with popular Bayesian PGS methods and both MVP META GWAS results and population-specific GWAS results from the respective African, European, and Hispanic MVP populations. We evaluate these scores in three AoU populations genetically similar to the respective African, Admixed American, and European 1000 Genomes Project superpopulations. Using correlation-based tests, we make formal comparisons of the PGS performance across the multiple AoU populations. We conclude that approaches that combine GWAS data from multiple populations produce PGSs that perform better than approaches that utilize smaller single-population GWAS results matched to the target population, and specifically that multi-ancestry scores built with PRS-CSx outperform the other approaches in the three AoU populations.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100355"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142355562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MGA-related syndrome: A proposed novel disorder. MGA相关综合征:一种拟议中的新型疾病
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-11-26 DOI: 10.1016/j.xhgg.2024.100387
Bobbi McGivern, Michelle M Morrow, Erin Torti, Kirsty McWalter, Ingrid M Wentzensen, Kristin G Monaghan, Amanda Gerard, Laurie Robak, David Chitayat, Claire Botsford, Sarah Jurgensmeyer, Peter Leahy, Paul Kruszka
{"title":"MGA-related syndrome: A proposed novel disorder.","authors":"Bobbi McGivern, Michelle M Morrow, Erin Torti, Kirsty McWalter, Ingrid M Wentzensen, Kristin G Monaghan, Amanda Gerard, Laurie Robak, David Chitayat, Claire Botsford, Sarah Jurgensmeyer, Peter Leahy, Paul Kruszka","doi":"10.1016/j.xhgg.2024.100387","DOIUrl":"10.1016/j.xhgg.2024.100387","url":null,"abstract":"<p><p>MGA (OMIM: 616061) encodes a dual-specificity transcription factor that regulates the expression of Max-network and T-box family target genes, important in embryogenesis. Previous studies have linked MGA to various phenotypes, including neurodevelopmental disorders, congenital heart disease, and early-onset Parkinson's disease. Here, we describe the clinical phenotype of individuals with de novo, heterozygous predicted loss-of-function variants in MGA, suggesting a unique disorder involving both neurodevelopmental and congenital anomalies. In addition to developmental delays, certain congenital anomalies were present in all individuals in this cohort including cardiac anomalies, male genital malformations, and craniofacial dysmorphisms. Additional findings seen in multiple individuals in this cohort include hypotonia, abnormal brain imaging, hearing loss, sleep dysfunction, urinary issues, skeletal abnormalities, and feeding difficulties. These findings provide support for MGA as a gene intolerant to protein truncation with a broad phenotypic spectrum.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100387"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Germline de novo alterations of RUNX1T1 in individuals with neurodevelopmental and congenital anomalies. 神经发育异常和先天性畸形患者的 RUNX1T1 基因新变异
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-11-20 DOI: 10.1016/j.xhgg.2024.100384
Erfan Aref-Eshghi, Katherine J Anderson, Lauren Boulay, Kathleen Brown, Jessica Duis, Christine A Giummo, Jessica Ogawa, Deanna Alexis Carere, Elizabeth A Normand, Yaping Qian, Kirsty McWalter, Erin Torti
{"title":"Germline de novo alterations of RUNX1T1 in individuals with neurodevelopmental and congenital anomalies.","authors":"Erfan Aref-Eshghi, Katherine J Anderson, Lauren Boulay, Kathleen Brown, Jessica Duis, Christine A Giummo, Jessica Ogawa, Deanna Alexis Carere, Elizabeth A Normand, Yaping Qian, Kirsty McWalter, Erin Torti","doi":"10.1016/j.xhgg.2024.100384","DOIUrl":"10.1016/j.xhgg.2024.100384","url":null,"abstract":"<p><p>Runt-related transcription factor 1 translocated to 1 (RUNX1T1; also known as eight-twenty-one [ETO]) encodes a transcription regulator for hematopoietic genes and is well known for its involvement in hematologic malignancies, particularly acute myeloid leukemia (AML). However, its role in congenital disease is less understood. This study provides detailed clinical and molecular information on three cases exhibiting neurodevelopmental and congenital anomalies with germline de novo alterations in RUNX1T1. One case features a de novo nonsense variant in the 5' region of the gene (c.106C>T p.Gln36Ter), while the other two harbor de novo missense variants in the C terminus end (c.1234G>A p.Gly412Arg and c.1561C>T p.His521Tyr). Common features across cases include craniofacial dysmorphism and neurodevelopmental issues, including developmental delay, learning disabilities, attention-deficit hyperactivity disorder, and autism. This study, in conjunction with previously reported germline disruptions of RUNX1T1, provides evidence supporting the role of germline RUNX1T1 variation in human congenital neurodevelopmental disorders.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100384"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exonic splice variant discovery using in vitro models of inherited retinal disease. 利用遗传性视网膜疾病的体外模型发现外显子剪接变体。
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-09-30 DOI: 10.1016/j.xhgg.2024.100357
Nathaniel K Mullin, Laura R Bohrer, Kristin R Anfinson, Jeaneen L Andorf, Robert F Mullins, Budd A Tucker, Edwin M Stone
{"title":"Exonic splice variant discovery using in vitro models of inherited retinal disease.","authors":"Nathaniel K Mullin, Laura R Bohrer, Kristin R Anfinson, Jeaneen L Andorf, Robert F Mullins, Budd A Tucker, Edwin M Stone","doi":"10.1016/j.xhgg.2024.100357","DOIUrl":"10.1016/j.xhgg.2024.100357","url":null,"abstract":"<p><p>Correct identification of the molecular consequences of pathogenic genetic variants is essential to the development of allele-specific therapies. However, such molecular effects may remain ambiguous following genetic sequence analysis alone. Here, we identify exonic codon-altering variants that are also predicted to disrupt normal RNA splicing in the context of inherited retinal disease. NR2E3 c.932G>A (p.Arg311Gln) is a variant commonly associated with enhanced S cone syndrome. Previous studies using mutagenized cDNA constructs have shown that the arginine to glutamine substitution at position 311 of NR2E3 does not meaningfully diminish function of the rod-specific transcription factor. Using retinal organoids, we explored the molecular consequences of NR2E3 c.932G>A when expressed endogenously during human rod photoreceptor cell development. Retinal organoids carrying the NR2E3 c.932G>A allele expressed a transcript containing a 186-nucleotide deletion of exon 6 within the ligand binding domain. This short transcript was not detected in control organoids or control human donor retina samples. A minigene containing exons 5 and 6 of NR2E3 showed sufficiency of the c.932G>A variant to cause the observed splicing defect. These results support the hypothesis that the pathogenic NR2E3 c.932G>A variant leads to photoreceptor disease by causing a splice defect and not through an amino acid substitution as previously supposed. They also explain the relatively mild effect of Arg311Gln on NR2E3 function in vitro. We also used in silico prediction tools to show that similar changes are likely to affect other inherited retinal disease variants in genes such as CEP290, ABCA4, and BEST1.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100357"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association study reveals shared and distinct genetic architecture of fatty acids and oxylipins in the Hispanic Community Health Study/Study of Latinos. 全基因组关联研究揭示了西班牙裔社区健康研究/拉丁裔研究(HCHS/SOL)中脂肪酸和生物活性氧脂代谢产物的共同和独特的遗传结构。
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-12-06 DOI: 10.1016/j.xhgg.2024.100390
Carolina G Downie, Heather M Highland, Mona Alotaibi, Barrett M Welch, Annie Green Howard, Susan Cheng, Nick Miller, Mohit Jain, Robert C Kaplan, Adam G Lilly, Tao Long, Tamar Sofer, Bharat Thyagarajan, Bing Yu, Kari E North, Christy L Avery
{"title":"Genome-wide association study reveals shared and distinct genetic architecture of fatty acids and oxylipins in the Hispanic Community Health Study/Study of Latinos.","authors":"Carolina G Downie, Heather M Highland, Mona Alotaibi, Barrett M Welch, Annie Green Howard, Susan Cheng, Nick Miller, Mohit Jain, Robert C Kaplan, Adam G Lilly, Tao Long, Tamar Sofer, Bharat Thyagarajan, Bing Yu, Kari E North, Christy L Avery","doi":"10.1016/j.xhgg.2024.100390","DOIUrl":"10.1016/j.xhgg.2024.100390","url":null,"abstract":"<p><p>Bioactive fatty acid-derived oxylipin molecules play key roles mediating inflammation and oxidative stress. Circulating levels of fatty acids and oxylipins are influenced by environmental and genetic factors; characterizing the genetic architecture of bioactive lipids could yield new insights into underlying biology. We performed a genome-wide association study (GWAS) of 81 fatty acids and oxylipins in 11,584 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants with genetic and lipidomic data measured at study baseline (58.6% female, mean age = 46.1 years (standard deviation 13.8)). Additionally, given the effects of central obesity on inflammation, we examined interactions with waist circumference using two-degree-of-freedom joint tests. Thirty-three of the 81 oxylipins and fatty acids were significantly heritable (heritability range: 0-32.7%). Forty (49.4%) oxylipins and fatty acids had at least one genome-wide significant (p < 6.94E-11) variant resulting in 19 independent genetic loci. Six loci (lead variant minor allele frequency [MAF] range: 0.08-0.50), including desaturase-encoding FADS and OATP1B1 transporter protein-encoding SLCO1B1, exhibited associations with two or more fatty acids and oxylipins. At several of these loci, there was evidence of colocalization of the top variant across fatty acids and oxylipins. The remaining loci were only associated with one oxylipin or fatty acid and included several CYP loci. We also identified an additional rare variant (MAF = 0.002) near CARS2 in two-degree-of-freedom tests. Our analyses revealed shared and distinct genetic architecture underlying fatty acids and oxylipins, providing insights into genetic factors and motivating work to characterize these compounds and elucidate their roles in disease.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100390"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LSM7 variants involving key amino acids for LSM complex function cause a neurodevelopmental disorder with leukodystrophy and cerebellar atrophy. 涉及 LSM 复合物功能关键氨基酸的 LSM7 变体会导致一种伴有白营养不良和小脑萎缩的神经发育障碍。
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-10-16 DOI: 10.1016/j.xhgg.2024.100372
Matis Crespin, Karine Siquier-Pernet, Pauline Marzin, Christine Bole-Feysot, Valérie Malan, Patrick Nitschké, Marie Hully, Charles-Joris Roux, Michel Lemoine, Marlène Rio, Nathalie Boddaert, Thomas Courtin, Vincent Cantagrel
{"title":"LSM7 variants involving key amino acids for LSM complex function cause a neurodevelopmental disorder with leukodystrophy and cerebellar atrophy.","authors":"Matis Crespin, Karine Siquier-Pernet, Pauline Marzin, Christine Bole-Feysot, Valérie Malan, Patrick Nitschké, Marie Hully, Charles-Joris Roux, Michel Lemoine, Marlène Rio, Nathalie Boddaert, Thomas Courtin, Vincent Cantagrel","doi":"10.1016/j.xhgg.2024.100372","DOIUrl":"10.1016/j.xhgg.2024.100372","url":null,"abstract":"<p><p>Cerebellar atrophy and hypoplasia are usually identified on MRI performed on children presenting signs of cerebellar ataxias, developmental delay, and intellectual disability. These signs can be associated with hypo- or de-myelinating leukodystrophies. A recent study reported two cases: one child diagnosed with leukodystrophy and cerebellar atrophy, harboring a homozygous variant in LSM7, and another who died in utero, presumed to have another homozygous variant in LSM7, based on the parents' genotype. LSM7 encodes a subunit of the LSM complex, involved in pre-RNA maturation and mRNA degradation. Consequently, it has been suggested as a strong candidate disease gene. This hypothesis was supported by functional investigations of the variants. Here, we report a patient with neurodevelopmental defects, leukodystrophy, and cerebellar atrophy, harboring compound heterozygous missense variants in the LSM7 gene. One of these variants is the same as the one carried by the first case reported previously. The other one is at the same position as the variant potentially carried by the second case reported previously. Based on comparable neuroimaging, clinical features, and the involvement of the same amino acids previously demonstrated as key for LSM complex function, we confirm that LSM7 disruption causes a neurodevelopmental disorder characterized by leukodystrophy and cerebellar atrophy.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100372"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional genomics implicates natural killer cells in the pathogenesis of ankylosing spondylitis. 功能基因组学发现自然杀伤细胞与强直性脊柱炎的发病机制有关。
IF 3.3
HGG Advances Pub Date : 2025-01-09 Epub Date: 2024-10-28 DOI: 10.1016/j.xhgg.2024.100375
Marcos Chiñas, Daniela Fernandez-Salinas, Vitor R C Aguiar, Victor E Nieto-Caballero, Micah Lefton, Peter A Nigrovic, Joerg Ermann, Maria Gutierrez-Arcelus
{"title":"Functional genomics implicates natural killer cells in the pathogenesis of ankylosing spondylitis.","authors":"Marcos Chiñas, Daniela Fernandez-Salinas, Vitor R C Aguiar, Victor E Nieto-Caballero, Micah Lefton, Peter A Nigrovic, Joerg Ermann, Maria Gutierrez-Arcelus","doi":"10.1016/j.xhgg.2024.100375","DOIUrl":"10.1016/j.xhgg.2024.100375","url":null,"abstract":"<p><p>Multiple lines of evidence indicate that ankylosing spondylitis (AS) is a lymphocyte-driven disease. However, which lymphocyte populations are critical in AS pathogenesis is not known. In this study, we aimed to identify the key cell types mediating the genetic risk in AS using an unbiased functional genomics approach. We integrated genome-wide association study (GWAS) data with epigenomic and transcriptomic datasets of human immune cells. To quantify enrichment of cell type-specific open chromatin or gene expression in AS risk loci, we used three published methods-LDSC-SEG, SNPsea, and scDRS-that have successfully identified relevant cell types in other diseases. Natural killer (NK) cell-specific open chromatin regions are significantly enriched in heritability for AS, compared to other immune cell types such as T cells, B cells, and monocytes. This finding was consistent between two AS GWAS. Using RNA sequencing data, we validated that genes in AS risk loci are enriched in NK cell-specific gene expression. Using the human Space-Time Gut Cell Atlas, we also found significant upregulation of AS-associated genes predominantly in NK cells. We performed co-localization analyses between GWAS risk loci and genetic variants associated with gene expression (eQTL) to find putative target genes. This revealed four AS risk loci affecting regulation of candidate target genes in NK cells: two known loci, ERAP1 and TNFRSF1A, and two understudied loci, ENTR1 (SDCCAG3) and B3GNT2. Our findings suggest that NK cells may play a crucial role in AS development and highlight four putative target genes for functional follow-up in NK cells.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100375"},"PeriodicalIF":3.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信