Targeted long-read cDNA sequencing reveals novel splice-altering pathogenic variants causing retinal dystrophies.

IF 3.3 Q2 GENETICS & HEREDITY
Dalila Capasso, Roberta Zeuli, Gavin Arno, Michael Kwint, Raoul Timmermans, Karla A Ruiz-Ceja, Marianthi Karali, Francesca Simonelli, Sabrina Signorini, Enza Maria Valente, Frans P M Cremers, Sandro Banfi, Susanne Roosing, Daan M Panneman, Suzanne E de Bruijn
{"title":"Targeted long-read cDNA sequencing reveals novel splice-altering pathogenic variants causing retinal dystrophies.","authors":"Dalila Capasso, Roberta Zeuli, Gavin Arno, Michael Kwint, Raoul Timmermans, Karla A Ruiz-Ceja, Marianthi Karali, Francesca Simonelli, Sabrina Signorini, Enza Maria Valente, Frans P M Cremers, Sandro Banfi, Susanne Roosing, Daan M Panneman, Suzanne E de Bruijn","doi":"10.1016/j.xhgg.2025.100442","DOIUrl":null,"url":null,"abstract":"<p><p>Splice-altering variants are suggested to be responsible for part of the missing heritability of inherited retinal diseases (IRDs). The interpretation of these variants is challenging as functional evidence is required to validate pathogenicity. We explored the diagnostic value of a targeted long-read cDNA sequencing (lrcDNA-seq) approach to investigate IRD-associated splicing defects. For each affected individual, RNA was isolated from blood, and for each candidate gene, cDNA amplicons, spanning the complete open reading frame or multiple exons, were generated and subjected to long-read sequencing. We validated our approach by assessing previously described pathogenic splice-altering variants in IRD-associated genes. Next, we investigated six genetically unexplained affected individuals, each carrying pathogenic variant(s) in NMNAT1. In two probands, we provided functional validation for previously identified variants of uncertain significance present on the second allele. In four other subjects, lrcDNA-seq revealed the partial inclusion of an SVA_F retrotransposon in the NMNAT1 mRNA, predicted to introduce a premature stop codon. We showed that targeted lrcDNA-seq is effective in characterizing splice defects and in identifying novel splice-altering variants and uncovered the IRD genetic basis for six previously unexplained subjects. We believe that the implementation of this technique has the potential to contribute to an increased diagnostic rate of IRDs.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":"6 3","pages":"100442"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Splice-altering variants are suggested to be responsible for part of the missing heritability of inherited retinal diseases (IRDs). The interpretation of these variants is challenging as functional evidence is required to validate pathogenicity. We explored the diagnostic value of a targeted long-read cDNA sequencing (lrcDNA-seq) approach to investigate IRD-associated splicing defects. For each affected individual, RNA was isolated from blood, and for each candidate gene, cDNA amplicons, spanning the complete open reading frame or multiple exons, were generated and subjected to long-read sequencing. We validated our approach by assessing previously described pathogenic splice-altering variants in IRD-associated genes. Next, we investigated six genetically unexplained affected individuals, each carrying pathogenic variant(s) in NMNAT1. In two probands, we provided functional validation for previously identified variants of uncertain significance present on the second allele. In four other subjects, lrcDNA-seq revealed the partial inclusion of an SVA_F retrotransposon in the NMNAT1 mRNA, predicted to introduce a premature stop codon. We showed that targeted lrcDNA-seq is effective in characterizing splice defects and in identifying novel splice-altering variants and uncovered the IRD genetic basis for six previously unexplained subjects. We believe that the implementation of this technique has the potential to contribute to an increased diagnostic rate of IRDs.

靶向长读cDNA测序揭示了导致视网膜营养不良的新的剪接改变致病变异。
剪接改变的变异被认为是遗传性视网膜疾病(IRDs)缺失遗传性的部分原因。这些变异的解释是具有挑战性的,因为需要功能证据来验证致病性。我们探索了靶向长读cDNA测序(lrcDNA-seq)方法在研究ird相关剪接缺陷方面的诊断价值。对于每个受影响的个体,从血液中分离RNA,对每个候选基因,生成cDNA扩增子,跨越完整的开放阅读框或多个外显子,并进行长读测序。我们通过评估先前描述的ird相关基因中致病性剪接改变变异来验证我们的方法。接下来,我们调查了6个基因不明的受影响个体,每个个体都携带NMNAT1的致病变异。在两个先证物中,我们为第二个等位基因上先前鉴定的不确定意义的变体提供了功能验证。在其他四名受试者中,lrcDNA-seq显示NMNAT1 mRNA中部分包含SVA_F反转录转座子,预计会引入一个过早停止密码子。我们发现靶向lrcDNA-seq在表征剪接缺陷和识别新的剪接改变变异方面是有效的,并揭示了六个以前无法解释的受试者的IRD遗传基础。我们相信,该技术的实施有可能有助于提高ird的诊断率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信