The Planetary Science Journal最新文献

筛选
英文 中文
The Dynamical State of the Didymos System before and after the DART Impact DART 撞击前后迪迪莫斯系统的动力学状态
The Planetary Science Journal Pub Date : 2024-08-23 DOI: 10.3847/psj/ad62f5
Derek C. Richardson, Harrison F. Agrusa, Brent Barbee, Rachel H. Cueva, Fabio Ferrari, Seth A. Jacobson, Rahil Makadia, Alex J. Meyer, Patrick Michel, Ryota Nakano, Yun Zhang, Paul Abell, Colby C. Merrill, Adriano Campo Bagatin, Olivier Barnouin, Nancy L. Chabot, Andrew F. Cheng, Steven R. Chesley, R. Terik Daly, Siegfried Eggl, Carolyn M. Ernst, Eugene G. Fahnestock, Tony L. Farnham, Oscar Fuentes-Muñoz, Edoardo Gramigna, Douglas P. Hamilton, Masatoshi Hirabayashi, Martin Jutzi, Josh Lyzhoft, Riccardo Lasagni Manghi, Jay McMahon, Fernando Moreno, Naomi Murdoch, Shantanu P. Naidu, Eric E. Palmer, Paolo Panicucci, Laurent Pou, Petr Pravec, Sabina D. Raducan, Andrew S. Rivkin, Alessandro Rossi, Paul Sánchez, Daniel J. Scheeres, Peter Scheirich, Stephen R. Schwartz, Damya Souami, Gonzalo Tancredi, Paolo Tanga, Paolo Tortora, Josep M. Trigo-Rodríguez, Kleomenis Tsiganis, John Wimarsson, Marco Zannoni
{"title":"The Dynamical State of the Didymos System before and after the DART Impact","authors":"Derek C. Richardson, Harrison F. Agrusa, Brent Barbee, Rachel H. Cueva, Fabio Ferrari, Seth A. Jacobson, Rahil Makadia, Alex J. Meyer, Patrick Michel, Ryota Nakano, Yun Zhang, Paul Abell, Colby C. Merrill, Adriano Campo Bagatin, Olivier Barnouin, Nancy L. Chabot, Andrew F. Cheng, Steven R. Chesley, R. Terik Daly, Siegfried Eggl, Carolyn M. Ernst, Eugene G. Fahnestock, Tony L. Farnham, Oscar Fuentes-Muñoz, Edoardo Gramigna, Douglas P. Hamilton, Masatoshi Hirabayashi, Martin Jutzi, Josh Lyzhoft, Riccardo Lasagni Manghi, Jay McMahon, Fernando Moreno, Naomi Murdoch, Shantanu P. Naidu, Eric E. Palmer, Paolo Panicucci, Laurent Pou, Petr Pravec, Sabina D. Raducan, Andrew S. Rivkin, Alessandro Rossi, Paul Sánchez, Daniel J. Scheeres, Peter Scheirich, Stephen R. Schwartz, Damya Souami, Gonzalo Tancredi, Paolo Tanga, Paolo Tortora, Josep M. Trigo-Rodríguez, Kleomenis Tsiganis, John Wimarsson, Marco Zannoni","doi":"10.3847/psj/ad62f5","DOIUrl":"https://doi.org/10.3847/psj/ad62f5","url":null,"abstract":"NASA’s Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the natural satellite of (65803) Didymos, on 2022 September 26, as a first successful test of kinetic impactor technology for deflecting a potentially hazardous object in space. The experiment resulted in a small change to the dynamical state of the Didymos system consistent with expectations and Level 1 mission requirements. In the preencounter paper, predictions were put forward regarding the pre- and postimpact dynamical state of the Didymos system. Here we assess these predictions, update preliminary findings published after the impact, report on new findings related to dynamics, and provide implications for ESA’s Hera mission to Didymos, scheduled for launch in 2024 October with arrival in 2026 December. Preencounter predictions tested to date are largely in line with observations, despite the unexpected, flattened appearance of Didymos compared to the radar model and the apparent preimpact oblate shape of Dimorphos (with implications for the origin of the system that remain under investigation). New findings include that Dimorphos likely became prolate due to the impact and may have entered a tumbling rotation state. A possible detection of a postimpact transient secular decrease in the binary orbital period suggests possible dynamical coupling with persistent ejecta. Timescales for damping of any tumbling and clearing of any debris are uncertain. The largest uncertainty in the momentum transfer enhancement factor of the DART impact remains the mass of Dimorphos, which will be resolved by the Hera mission.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimate of Water and Hydroxyl Abundance on Asteroid (16) Psyche from JWST Data 从 JWST 数据估算小行星 (16) Psyche 上的水和羟基丰度
The Planetary Science Journal Pub Date : 2024-08-23 DOI: 10.3847/psj/ad66b9
Stephanie G. Jarmak, Tracy M. Becker, Charles E. Woodward, Casey I. Honniball, Andrew S. Rivkin, Margaret M. McAdam, Zoe A. Landsman, Saverio Cambioni, Thomas G. Müller, Driss Takir, Kurt D. Retherford, Anicia Arredondo, Linda T. Elkins-Tanton
{"title":"Estimate of Water and Hydroxyl Abundance on Asteroid (16) Psyche from JWST Data","authors":"Stephanie G. Jarmak, Tracy M. Becker, Charles E. Woodward, Casey I. Honniball, Andrew S. Rivkin, Margaret M. McAdam, Zoe A. Landsman, Saverio Cambioni, Thomas G. Müller, Driss Takir, Kurt D. Retherford, Anicia Arredondo, Linda T. Elkins-Tanton","doi":"10.3847/psj/ad66b9","DOIUrl":"https://doi.org/10.3847/psj/ad66b9","url":null,"abstract":"Our understanding of solar system evolution is closely tied to interpretations of asteroid composition, particularly the M-class asteroids. These asteroids were initially thought to be the exposed cores of differentiated planetesimals, a hypothesis based on their spectral similarity to iron meteorites. However, recent astronomical observations have revealed hydration on their surface through the detection of 3 <italic toggle=\"yes\">μ</italic>m absorption features associated with OH and potentially H<sub>2</sub>O. We present evidence of hydration due mainly to OH on asteroid (16) Psyche, the largest M-class asteroid, using data from the James Webb Space Telescope (JWST) spanning 1.1–6.63 <italic toggle=\"yes\">μ</italic>m. Our observations include two detections of the full 3 <italic toggle=\"yes\">μ</italic>m feature associated with OH and H<sub>2</sub>O resembling those found in CY-, CH-, and CB-type carbonaceous chondrites, and no 6 <italic toggle=\"yes\">μ</italic>m feature uniquely associated with H<sub>2</sub>O across two observations. We observe 3 <italic toggle=\"yes\">μ</italic>m depths of between 4.3% and 6% across two observations, values consistent with hydrogen abundance estimates on other airless bodies of 250–400 ppm. We place an upper limit of 39 ppm on the water abundance from the standard deviation around the 6 <italic toggle=\"yes\">μ</italic>m feature region. The presence of hydrated minerals suggests a complex history for Psyche. Exogenous sources of OH-bearing minerals could come from hydrated impactors. Endogenous OH-bearing minerals would indicate a composition more similar to E- or P-class asteroids. If the hydration is endogenous, it supports the theory that Psyche originated beyond the snow line and later migrated to the outer main belt.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Technique for Retrieving the Exospheric Number Density Distribution from Pickup Ion Ring Distributions 从拾取离子环分布读取外大气层数量密度分布的技术
The Planetary Science Journal Pub Date : 2024-08-23 DOI: 10.3847/psj/ad65d4
Kei Masunaga, Naoki Terada, François Leblanc, Yuki Harada, Takuya Hara, Shotaro Sakai, Shoichiro Yokota, Kanako Seki, Atsushi Yamazaki, James. P. McFadden, Tomohiro Usui
{"title":"A Technique for Retrieving the Exospheric Number Density Distribution from Pickup Ion Ring Distributions","authors":"Kei Masunaga, Naoki Terada, François Leblanc, Yuki Harada, Takuya Hara, Shotaro Sakai, Shoichiro Yokota, Kanako Seki, Atsushi Yamazaki, James. P. McFadden, Tomohiro Usui","doi":"10.3847/psj/ad65d4","DOIUrl":"https://doi.org/10.3847/psj/ad65d4","url":null,"abstract":"Ion pickup by the solar wind is ubiquitous in space plasma. Because pickup ions are originally produced by ionization of an exospheric neutral atmosphere, their measurements contain information on the exospheric neutral abundance. Here we established a method to retrieve exospheric number densities, by analyzing the ion velocity distribution functions of pickup ions measured by the Mars Atmosphere and Volatile EvolutioN spacecraft. We successfully retrieved exospheric oxygen density distributions at altitudes ranging from 1000 to 10,000 km around Mars except for the vicinity of the bow shock. This method can be applied to other space missions to study the upper atmosphere of planets, moons, and other small bodies in our solar system, where pickup ions exist.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Earth Encounter as the Cause of Chaotic Dynamics in Binary Asteroid (35107) 1991VH 双小行星(35107)1991VH 的混沌动力学原因--与地球的相遇
The Planetary Science Journal Pub Date : 2024-08-23 DOI: 10.3847/psj/ad6605
Alex J. Meyer, Oscar Fuentes-Muñoz, Ioannis Gkolias, Kleomenis Tsiganis, Petr Pravec, Shantanu Naidu, Daniel J. Scheeres
{"title":"An Earth Encounter as the Cause of Chaotic Dynamics in Binary Asteroid (35107) 1991VH","authors":"Alex J. Meyer, Oscar Fuentes-Muñoz, Ioannis Gkolias, Kleomenis Tsiganis, Petr Pravec, Shantanu Naidu, Daniel J. Scheeres","doi":"10.3847/psj/ad6605","DOIUrl":"https://doi.org/10.3847/psj/ad6605","url":null,"abstract":"Among binary asteroids, (35107) 1991VH stands out as unique given the likely chaotic rotation within its secondary component. The source of this excited dynamical state is unknown. In this work, we demonstrate that a past close encounter with Earth could have provided the necessary perturbation to allow the natural internal dynamics, characterized by spin–orbit coupling, to evolve the system into its current dynamical state. In this hypothesis, the secondary of 1991VH was previously in a classical 1:1 spin–orbit resonance with an orbit period likely between 28 and 35 hr before being perturbed by an Earth encounter within ∼80,000 km. We find that if the energy dissipation within the secondary is relatively inefficient, this excited dynamical state could persist to today and produce the observed ground-based measurements. Coupled with the orbital history of 1991VH, we can then place a constraint on the tidal dissipation parameters of the secondary.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of the Moon-forming Impactor to the Volatile Inventory in the Bulk Silicate Earth 成月撞击器对硅酸盐块状地球挥发物清单的贡献
The Planetary Science Journal Pub Date : 2024-08-23 DOI: 10.3847/psj/ad5b5d
Damanveer S. Grewal, Yoshinori Miyazaki, Nicole X. Nie
{"title":"Contribution of the Moon-forming Impactor to the Volatile Inventory in the Bulk Silicate Earth","authors":"Damanveer S. Grewal, Yoshinori Miyazaki, Nicole X. Nie","doi":"10.3847/psj/ad5b5d","DOIUrl":"https://doi.org/10.3847/psj/ad5b5d","url":null,"abstract":"The timing and mechanism by which the present-day inventory of life-essential volatiles hydrogen–carbon–nitrogen–sulfur (H–C–N–S) in the bulk silicate Earth (BSE) was established are debated. In this study we have modeled the equilibrium partitioning of H–C–N–S between core, magma ocean (MO), and atmosphere to determine whether the Moon-forming impactor (MFI) was the primary source of volatiles in the BSE. Our findings suggest that the MFI’s core and MO-degassed atmosphere were its primary H–C–N–S reservoirs. Since the MFI likely lost its MO-degassed atmosphere before the giant impact, most of the BSE’s volatiles must come from the small fraction of the MFI’s core which reequilibrated with Earth’s post-impact MO. This implies a high H–C–N–S inventory in the MFI (up to 50% of volatile-rich carbonaceous chondrites) to establish the BSE’s volatile budget. Although isotopic compositions of nonvolatile elements do not rule out the possibility of substantial volatile-rich, carbonaceous material accretion, MFI’s collisional growth from thermally metamorphosed/differentiated planetesimals makes it improbable that it contained ∼50% carbonaceous chondrite equivalent of H–C–N during its differentiation. Therefore, the MFI was unlikely the primary source of volatiles in the BSE. A significant portion of the BSE’s volatile inventory (especially H and C) likely predates the Moon-forming event. To prevent loss to space and segregation into Earth’s core, volatile-bearing materials must be delivered during the final accretion event(s) preceding the Moon-forming event. The substantial size of the proto-Earth at this stage, combined with limited metal–silicate equilibration during the Moon-forming event, facilitated the retention of these volatiles within the BSE.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"83 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NWA 11562: A Unique Ureilite with Extreme Mg-rich Constituents NWA 11562:具有极端富镁成分的独特乌雷石
The Planetary Science Journal Pub Date : 2024-08-22 DOI: 10.3847/psj/ad6154
Mingbao Li, Ke Zhu, Yan Fan, P. M. Ranjith, Chao Wang, Wen Yu, Shijie Li
{"title":"NWA 11562: A Unique Ureilite with Extreme Mg-rich Constituents","authors":"Mingbao Li, Ke Zhu, Yan Fan, P. M. Ranjith, Chao Wang, Wen Yu, Shijie Li","doi":"10.3847/psj/ad6154","DOIUrl":"https://doi.org/10.3847/psj/ad6154","url":null,"abstract":"A comprehensive study of an ungrouped achondrite meteorite, North West Africa (NWA) 11562, was conducted, involving petrology, mineralogy, and mass-independent chromium isotopic composition. NWA 11562 comprises 34.9 vol% olivine, 56.1 vol% pyroxenes, 6.7 vol% Fe–Ni metal and oxides, 2.2 vol% carbon, and 0.2 vol% anhydrite. The oxygen isotopic composition (<italic toggle=\"yes\">δ</italic>\u0000<sup>18</sup>O = 6.24‰ ± 0.13‰ and Δ<sup>17</sup>O = −1.81‰ ± 0.03‰; Meteoritical Bulletin Database) and chromium isotopic compositions (<italic toggle=\"yes\">ε</italic>\u0000<sup>54</sup>Cr = −0.82 ± 0.10, 2SE) are consistent with NWA 11562 being a ureilite, and petrographic observations show features similar to those of the common ureilite group meteorites. Olivine (core: Fo<sub>99.0 ± 0.1;</sub> rim: Fo<sub>98.9 ± 0.1</sub>) and pyroxene (orthopyroxene: Mg# 99.0 ± 0.2; clinopyroxene: Mg# 99.1 ± 0.7) core compositions are more magnesian than in any previously known ureilite and lack the characteristic reduction rims of ureilites. Rounded small olivine grains within NWA 11562 indicate that the meteorite experienced impact and associated melting. Combined with the characteristic Fe/Mn ratio (3.84 ± 0.16) and Mg# (99.0 ± 0.1) of olivine cores, we suggest that NWA 11562 represents a more Mg-rich ureilite than any previously reported. NWA 11562 has a high <sup>55</sup>Mn/<sup>52</sup>Cr ratio, and when combined with literature data, it plots on a well-defined <sup>53</sup>Mn–<sup>53</sup>Cr isochron, providing a more accurate age, i.e., 4566.7 ± 0.8 Ma, overlapping previous work. This age may represent the result of early partial melting of the ureilite parent body.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Science Product Pipelines and Archive Architecture for the DART Mission DART 任务的科学产品管道和档案架构
The Planetary Science Journal Pub Date : 2024-08-22 DOI: 10.3847/psj/ad5959
C. Dany Waller, Raymond C. Espiritu, Calley Tinsman, Hari Nair, Carolyn M. Ernst, R. Terik Daly, Olivier S. Barnouin, Angelo Zinzi, Nancy L. Chabot, Andrew S. Rivkin, Nicholas Moskovitz, David Osip, Tim Lister, Eileen Ryan, William Ryan
{"title":"Science Product Pipelines and Archive Architecture for the DART Mission","authors":"C. Dany Waller, Raymond C. Espiritu, Calley Tinsman, Hari Nair, Carolyn M. Ernst, R. Terik Daly, Olivier S. Barnouin, Angelo Zinzi, Nancy L. Chabot, Andrew S. Rivkin, Nicholas Moskovitz, David Osip, Tim Lister, Eileen Ryan, William Ryan","doi":"10.3847/psj/ad5959","DOIUrl":"https://doi.org/10.3847/psj/ad5959","url":null,"abstract":"On 2022 September 26, the Double Asteroid Redirection Test (DART) mission was the first successful demonstration of a kinetic impactor for planetary defense. The DART mission utilized a novel autonomous data processing pipeline architecture to quickly produce and analyze the quality of raw and calibrated images from the camera mounted on board the spacecraft. Optimization of the data processing pipeline allowed the final 150 images prior to impact to be calibrated and delivered to the Investigation Team and the press within 15 minutes of acquisition. A data quality analysis pipeline allowed for rapid identification of detector misconfigurations, missing data, and other adverse events. DART data products, along with data from LICIACube and data from ground observatories, used common file formats to facilitate the development of analysis and archiving software. This architecture is described for future missions with large volumes of data and an emphasis on quick-turnaround applications such as planetary defense.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts on Ocean Worlds Are Sufficiently Frequent and Energetic to Be of Astrobiological Importance 对海洋世界的撞击足够频繁,能量足够大,因此具有天体生物学意义
The Planetary Science Journal Pub Date : 2024-08-14 DOI: 10.3847/psj/ad656b
Shannon M. MacKenzie, Alexandra Pontefract, R. Terik Daly, Jacob J. Buffo, Gordon R. Osinski, Christopher J. Cline, Mark J. Cintala, Kathleen L. Craft, Mallory J. Kinczyk, Joshua Hedgepeth, Sarah M. Hörst, Abel Méndez, Ben K. D. Pearce, Angela M. Stickle, Steven D. Vance
{"title":"Impacts on Ocean Worlds Are Sufficiently Frequent and Energetic to Be of Astrobiological Importance","authors":"Shannon M. MacKenzie, Alexandra Pontefract, R. Terik Daly, Jacob J. Buffo, Gordon R. Osinski, Christopher J. Cline, Mark J. Cintala, Kathleen L. Craft, Mallory J. Kinczyk, Joshua Hedgepeth, Sarah M. Hörst, Abel Méndez, Ben K. D. Pearce, Angela M. Stickle, Steven D. Vance","doi":"10.3847/psj/ad656b","DOIUrl":"https://doi.org/10.3847/psj/ad656b","url":null,"abstract":"Evidence for the beneficial role of impacts in the creation of urable or habitable environments on Earth prompts the question of whether meteorite impacts could play a similar role at other potentially urable/habitable worlds like Enceladus, Europa, and Titan. In this work, we demonstrate that to first order, impact conditions on these worlds are likely to have been consistent with the survival of organic compounds and/or sufficient for promoting synthesis in impact melt. We also calculate melt production and freezing times for crater sizes found at Enceladus, Europa, and Titan and find that even the smallest craters at these worlds offer the potential to study the evolution of chemical pathways within impact melt. These first-order calculations point to a critical need to investigate these processes at higher fidelity with lab experiments, sophisticated thermodynamic and chemical modeling, and, eventually, in situ investigations by missions.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CUISINES Framework for Conducting Exoplanet Model Intercomparison Projects, Version 1.0 开展系外行星模型相互比较项目的 CUISINES 框架,1.0 版
The Planetary Science Journal Pub Date : 2024-08-13 DOI: 10.3847/psj/ad5830
Linda E. Sohl, Thomas J. Fauchez, Shawn Domagal-Goldman, Duncan A. Christie, Russell Deitrick, Jacob Haqq-Misra, C. E. Harman, Nicolas Iro, Nathan J. Mayne, Kostas Tsigaridis, Geronimo L. Villanueva, Amber V. Young, Guillaume Chaverot
{"title":"The CUISINES Framework for Conducting Exoplanet Model Intercomparison Projects, Version 1.0","authors":"Linda E. Sohl, Thomas J. Fauchez, Shawn Domagal-Goldman, Duncan A. Christie, Russell Deitrick, Jacob Haqq-Misra, C. E. Harman, Nicolas Iro, Nathan J. Mayne, Kostas Tsigaridis, Geronimo L. Villanueva, Amber V. Young, Guillaume Chaverot","doi":"10.3847/psj/ad5830","DOIUrl":"https://doi.org/10.3847/psj/ad5830","url":null,"abstract":"As JWST begins to return observations, it is more important than ever that exoplanet climate models can consistently and correctly predict the observability of exoplanets, retrieval of their data, and interpretation of planetary environments from that data. Model intercomparisons play a crucial role in this context, especially now when few data are available to validate model predictions. The CUISINES Working Group of NASA's Nexus for Exoplanet Systems Science supports a systematic approach to evaluating the performance of exoplanet models and provides here a framework for conducting community-organized exoplanet model intercomparison projects (exoMIPs). The CUISINES framework adapts Earth climate community practices specifically for the needs of the exoplanet researchers, encompassing a range of model types, planetary targets, and parameter space studies. It is intended to help researchers to work collectively, equitably, and openly toward common goals. The CUISINES framework rests on five principles: (1) define in advance what research question(s) the exoMIP is intended to address, (2) create an experimental design that maximizes community participation and advertise it widely, (3) plan a project timeline that allows all exoMIP members to participate fully, (4) generate data products from model output for direct comparison to observations, and (5) create a data management plan that is workable in the present and scalable for the future. Within the first years of its existence, CUISINES is already providing logistical support to 10 exoMIPs and will continue to host annual workshops for further community feedback and presentation of new exoMIP ideas.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Overspill Flood Channels from Young Craters Require Surface Melting and Hundreds of Meters of Midlatitude Ice Late in Mars’s History 年轻陨石坑的多条溢洪道要求地表融化以及火星历史晚期数百米的中纬度冰层
The Planetary Science Journal Pub Date : 2024-08-13 DOI: 10.3847/psj/ad5e6f
Alexandra O. Warren, Sharon A. Wilson, Alan Howard, Axel Noblet, Edwin S. Kite
{"title":"Multiple Overspill Flood Channels from Young Craters Require Surface Melting and Hundreds of Meters of Midlatitude Ice Late in Mars’s History","authors":"Alexandra O. Warren, Sharon A. Wilson, Alan Howard, Axel Noblet, Edwin S. Kite","doi":"10.3847/psj/ad5e6f","DOIUrl":"https://doi.org/10.3847/psj/ad5e6f","url":null,"abstract":"Mars’s tadpole craters are small, young craters whose crater rims are incised by one or more exit breaches but lack visible inlets. The tadpole-forming climate records the poorly understood drying of Mars since the Early Hesperian. A third of tadpole craters have multiple breaches; therefore, the climate must have been able to generate crater rim incision in multiple locations. We use HiRISE data for four multiple-breach tadpole craters to measure their crater fill, rims, and exit breaches. We compare these measurements and other data with our calculations of liquid water supply by rain, surface melting, groundwater discharge, and basal ice sheet melting to discriminate between four proposed formation hypotheses for tadpole breaches, favoring scenarios with ice-filled craters and supraglacial melting. We conclude that multiple-breach tadpole craters record hundreds of meters of midlatitude ice and climate conditions enabling intermittent melting in the Late Hesperian and Amazonian, suggesting that liquid water on Mars has only been available in association with water ice for billions of years.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信