An Earth Encounter as the Cause of Chaotic Dynamics in Binary Asteroid (35107) 1991VH

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS
Alex J. Meyer, Oscar Fuentes-Muñoz, Ioannis Gkolias, Kleomenis Tsiganis, Petr Pravec, Shantanu Naidu, Daniel J. Scheeres
{"title":"An Earth Encounter as the Cause of Chaotic Dynamics in Binary Asteroid (35107) 1991VH","authors":"Alex J. Meyer, Oscar Fuentes-Muñoz, Ioannis Gkolias, Kleomenis Tsiganis, Petr Pravec, Shantanu Naidu, Daniel J. Scheeres","doi":"10.3847/psj/ad6605","DOIUrl":null,"url":null,"abstract":"Among binary asteroids, (35107) 1991VH stands out as unique given the likely chaotic rotation within its secondary component. The source of this excited dynamical state is unknown. In this work, we demonstrate that a past close encounter with Earth could have provided the necessary perturbation to allow the natural internal dynamics, characterized by spin–orbit coupling, to evolve the system into its current dynamical state. In this hypothesis, the secondary of 1991VH was previously in a classical 1:1 spin–orbit resonance with an orbit period likely between 28 and 35 hr before being perturbed by an Earth encounter within ∼80,000 km. We find that if the energy dissipation within the secondary is relatively inefficient, this excited dynamical state could persist to today and produce the observed ground-based measurements. Coupled with the orbital history of 1991VH, we can then place a constraint on the tidal dissipation parameters of the secondary.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"1 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad6605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Among binary asteroids, (35107) 1991VH stands out as unique given the likely chaotic rotation within its secondary component. The source of this excited dynamical state is unknown. In this work, we demonstrate that a past close encounter with Earth could have provided the necessary perturbation to allow the natural internal dynamics, characterized by spin–orbit coupling, to evolve the system into its current dynamical state. In this hypothesis, the secondary of 1991VH was previously in a classical 1:1 spin–orbit resonance with an orbit period likely between 28 and 35 hr before being perturbed by an Earth encounter within ∼80,000 km. We find that if the energy dissipation within the secondary is relatively inefficient, this excited dynamical state could persist to today and produce the observed ground-based measurements. Coupled with the orbital history of 1991VH, we can then place a constraint on the tidal dissipation parameters of the secondary.
双小行星(35107)1991VH 的混沌动力学原因--与地球的相遇
在双小行星中,(35107) 1991VH 是独一无二的,因为它的次级部分可能存在混乱旋转。这种激发动力学状态的来源尚不清楚。在这项工作中,我们证明了过去与地球的近距离相遇可能提供了必要的扰动,使得以自旋轨道耦合为特征的自然内部动力学将该系统演化成当前的动力学状态。在这一假设中,1991VH的次级星体在受到地球在∼80,000千米范围内遭遇的扰动之前,处于经典的1:1自旋-轨道共振状态,轨道周期可能在28到35小时之间。我们发现,如果次级星内部的能量耗散效率相对较低,这种激发的动力学状态可能会持续到今天,并产生地面观测到的测量结果。结合1991VH的轨道历史,我们就可以对次级星的潮汐耗散参数进行约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信