Lily X. Zelaya-Molina , Ismael F. Chávez-Díaz , Juan Ramos-Garza , Marja L. Fajardo-Franco , César Hernández-Rodríguez
{"title":"Agriculture assisted by microbial genetic resources: Current and future scenarios","authors":"Lily X. Zelaya-Molina , Ismael F. Chávez-Díaz , Juan Ramos-Garza , Marja L. Fajardo-Franco , César Hernández-Rodríguez","doi":"10.1016/j.crmicr.2024.100222","DOIUrl":"10.1016/j.crmicr.2024.100222","url":null,"abstract":"<div><p>Microbial genetic resources, as part of world's biodiversity, are the backbone of all ecosystems. Their application in agri-food and industrial production has proven to be vital for the advancement of humankind. Today, amidst challenges stemming from population growth, climate change, shrinking arable land and increasing pollution, high-impact research on microbial genetic resources with the potential to strengthen the resilience of world agricultural production and safeguard human food security have been developed. Specifically, research on microbial genetic resources has focused on enhancing plant growth and health, improving soil quality and pollutant degradation, among other functions. Thus, this special issue will seek to bring together the advances and current state-of-the-art science in the search for, characterization, identification, evaluation, transfer and innovation of microbial genetic resources as key elements in migrating towards sustainable agriculture.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266651742400004X/pdfft?md5=ff3c3cd2cc41b6a39a985bdde79409e9&pid=1-s2.0-S266651742400004X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139631518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deciphering the complex interplay between gut microbiota and crop residue breakdown in forager and hive bees (Apis mellifera L.)","authors":"M.N. Rudra Gouda , K.M. Kumaranag , B. Ramakrishnan , Sabtharishi Subramanian","doi":"10.1016/j.crmicr.2024.100233","DOIUrl":"https://doi.org/10.1016/j.crmicr.2024.100233","url":null,"abstract":"<div><p>This study investigates <em>A. mellifera</em> gut microbiota diversity and enzymatic activities, aiming to utilize identified isolates for practical applications in sustainable crop residue management and soil health enhancement. This study sampled honey bees, analyzed gut bacterial diversity via 16S rRNA gene, and screened isolates for cellulolytic, hemicellulolytic, and pectinolytic activities, with subsequent assessment of enzymatic potential. The study reveals that cellulolytic and hemicellulolytic bacterial isolates, mainly from γ-Proteobacteria, Actinobacteria, and Firmicutes, have significant potential for crop residue management. Some genera, like <em>Aneurinibacillus, Bacillus, Clostridium, Enterobacter, Serratia, Stenotrophomonas, Apilactobacillus, Lysinibacillus</em>, and <em>Pseudomonas</em>, are very good at breaking down cellulose and hemicellulase. Notable cellulose-degrading genera include <em>Cedecea</em> (1.390 ± 0.57), <em>Clostridium</em> (1.360 ± 0.86 U/mg), <em>Enterobacter</em> (1.493 ± 1.10 U/mg), <em>Klebsiella</em> (1.380 ± 2.03 U/mg), and <em>Serratia</em> (1.402 ± 0.31 U/mg), while <em>Aneurinibacillus</em> (1.213 ± 1.12 U/mg), <em>Bacillus</em> (3.119 ± 0.55 U/mg), <em>Enterobacter</em> (1.042 ± 0.14 U/mg), <em>Serratia</em> (1.589 ± 0.05 U/mg), and <em>Xanthomonas</em> (1.156 ± 0.08 U/mg) excel in hemicellulase activity. Specific isolates with high cellulolytic and hemicellulolytic activities are identified, highlighting their potential for crop residue management. The research explores gut bacterial compartmentalization in <em>A. mellifera</em>, emphasising gut physiology's role in cellulose and hemicellulose digestion. Pectinolytic activity is observed, particularly in the Bacillaceae clade (3.229 ± 0.02), contributing to understanding the honey bee gut microbiome. The findings offer insights into microbiome diversity and enzymatic capabilities, with implications for biotechnological applications in sustainable crop residue management. The study concludes by emphasizing the need for ongoing research to uncover underlying mechanisms and ecological factors influencing gut microbiota, impacting honey bee health, colony dynamics, and advancements in crop residue management.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666517424000154/pdfft?md5=e1dd4b0d8c4f945bb2f1bd5092257c92&pid=1-s2.0-S2666517424000154-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140309369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guillermo Ortiz Charneco , Philip Kelleher , Andrius Buivydas , Paul P. de Waal , Irma M.H. van Rijswijck , Noël N.M.E. van Peij , Christian Cambillau , Jennifer Mahony , Douwe Van Sinderen
{"title":"Discovering genetic determinants for cell-to-cell adhesion in two prevalent conjugative lactococcal plasmids","authors":"Guillermo Ortiz Charneco , Philip Kelleher , Andrius Buivydas , Paul P. de Waal , Irma M.H. van Rijswijck , Noël N.M.E. van Peij , Christian Cambillau , Jennifer Mahony , Douwe Van Sinderen","doi":"10.1016/j.crmicr.2024.100239","DOIUrl":"https://doi.org/10.1016/j.crmicr.2024.100239","url":null,"abstract":"<div><p>Plasmids pNP40 and pUC11B encode two prevalent yet divergent conjugation systems, which have been characterized in detail recently. Here, we report the elucidation of the putative adhesins of the pNP40 and pUC11B conjugation systems, encoded by <em>traAd</em> and <em>trsAd</em>, respectively. Despite their significant sequence divergence, TraAd and TrsAd represent the most conserved component between the pNP40- and the pUC11B-encoded conjugation systems and share similar peptidoglycan-hydrolase domains. Protein structure prediction using AlphaFold2 highlighted the structural similarities between their predicted domains, as well as the potential homo-dimeric state of both proteins. Expression of the putative surface adhesins resulted in a cell clumping phenotype not only among cells expressing these surface adhesins but also between adhesin-expressing and non-producing cells. Furthermore, mutant derivatives of plasmids pNP40 or pUC11B carrying a mutation in <em>traAd</em> or <em>trsAd</em>, respectively, were shown to act as efficient donors provided the corresponding recipient expresses either <em>traAd</em> or <em>trsAd</em>, thus demonstrating <em>in trans</em> reciprocal complementarity of these proteins in conjugation systems.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266651742400021X/pdfft?md5=f15688bd46d58f4761c3bd7135735760&pid=1-s2.0-S266651742400021X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The plant endomicrobiome: Structure and strategies to produce stress resilient future crop","authors":"Shobhit Raj Vimal , Jay Shankar Singh , Ashwani Kumar , Sheo Mohan Prasad","doi":"10.1016/j.crmicr.2024.100236","DOIUrl":"10.1016/j.crmicr.2024.100236","url":null,"abstract":"<div><p>Plants have a microbiome, a diverse community of microorganisms, including bacteria, fungi, and viruses, living inside and on their tissues. Versatile endophytic microorganisms inhabited in every plant part without causing disease and develop endophytic microbiome or endo-microbiome. Plant endo-microbiome are drawn by the nutrient rich micro-environment, and in turn some microbes mutualistically endorse and protect plant from adverse environmental stresses. Plant endo-microbiome interact within well-designed host equilibrium containing xylem, phloem, nutrients, phytohormones, metabolites and shift according to environmental and nutritional change. Plant endo-microbiome regulate and respond to environmental variations, pathogens, herbivores by producing stress regulators, organic acids, secondary metabolites, stress hormones as well as unknown substances and signalling molecules. Endomicrobiome efficiently synthesizes multiple bioactive compounds, stress phytohormones with high competence. The technological innovation as next generation genomics biology and high-throughput multiomics techniques stepping stones on the illumination of critical endo-microbiome communities and functional characterization that aid in improving plant physiology, biochemistry and immunity interplay for best crop productivity. This review article contains deeper insight in endomicrobiome related research work in last years, recruitment, niche development, nutrient dynamics, stress removal mechanisms, bioactive services in plant health development, community architecture and communication, and immunity interplay in producing stress resilient future crop.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266651742400018X/pdfft?md5=91934ded62023f548aea9c96d899cc8b&pid=1-s2.0-S266651742400018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140772019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel experimental approach for the catalytic conversion of lignocellulosic Bambusa bambos to bioethanol","authors":"","doi":"10.1016/j.crmicr.2024.100267","DOIUrl":"10.1016/j.crmicr.2024.100267","url":null,"abstract":"<div><p><em>Bambusa bambos (B.B) biomass</em> is cellulose rich lignocellulosic material, containing 47.49% cellulose, 17.49% hemicellulose, 23.56% lignin was used as a potential substrate for bioethanol production. The research paper investigates the use of <em>B.B</em> biomass as a substrate for bio-ethanol production through a two-phase catalytic conversion process. Four water-regulated regimes were identified to optimize the conversion of lignocellulosic biomass to biofuel precursors. The catalytic hydrolysis of <em>B.B</em> using CuCl<sub>2</sub> was conducted for 10 hours at 110˚C, in aprotic ionic liquid (1-Butyl-3-methylimidazolium chloride) medium. The concentrations of glucose and 5-hydroxymethylfurfural (5-HMF) were measured while varying the amount of water addition. Water played a crucial role in the conversion of cellulose to glucose and 5-HMF by influencing product yields through the interplay of transport properties like heat conduction and viscosity. The highest glucose yield was achieved at 60.82% when operating at a water inclusion rate of 115.72 µL water/h for a duration of 6 hours at 110˚C. On the other hand, the maximum HMF yield was observed as 5.84% at water inclusion rate of 77.15 µL water/h for 5 hours at 110˚C. Yeast mediated glucose fermentation resulted in a bioethanol concentration of 5.5 mg/mL utilizing 15 mg/mL of catalytically produced glucose at a temperature of 30°C. After catalytic hydrolysis, the ionic liquid was also efficiently recycled for a sustainable economy.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266651742400049X/pdfft?md5=d4c5a7abac98289760a4b9b0efead185&pid=1-s2.0-S266651742400049X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Degradation of lignocellulose by different bacterial and fungal co-cultures","authors":"","doi":"10.1016/j.crmicr.2024.100271","DOIUrl":"10.1016/j.crmicr.2024.100271","url":null,"abstract":"<div><p>Long seen as non-valorisable waste, agricultural co-products are increasingly used in biorefinery processes. Co-culture appears as new trend for to improve the degradation of lignocellulose and improve the production of bioproducts. The goal of the study was to setup inter-domain co-cultures with high capabilities of lignocellulose degradation using a pluridisciplinary approach combining bioinformatics, enzymology, transcriptomics. Different individual lignocellulolytic strains: <em>Trichoderma reesei</em> QM6a and three bacteria (<em>Streptomyces coelicolor</em> A3(2), <em>Rhizobium</em> sp.XylPr11 and <em>Sphingobacterium prati</em> AraPr2 affiliated from different phyla) were used in that study . Synergic activities have been observed and quantified in co-culture conditions, particularly for xylanases and peroxidases activities. The enzymatic activities for the co-cultures in the most interesting co-culture (<em>T. reesei QM6a/S. coelicolor A3(2)</em>) reached more up to 2 IU/mL and 430 IU/mL respectively for the xylanase and peroxidase. Furthermore, ATR-FTIR analysis showed a real impact of co-culture condition on the substrate compared to the monoculture specially for hemicellulose degradation. Transcriptomics of <em>S. coelicolor</em> A3(2) either in mono or co-culture showed a relative similar pattern profile whatever the condition analysed with a specific overexpression of certain CAZyme genes involved in glycolysis due to the hydrolytic role played by the fungal partner. This work provided the proof of concept for technological feasibility, pertinence and usefulness of interdomain co-culture.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666517424000531/pdfft?md5=3affb225bcb8fb63efcf3efe4560a02c&pid=1-s2.0-S2666517424000531-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating In-silico and In-vitro approaches to identify plant-derived bioactive molecules against spore coat protein CotH3 and high affinity iron permease FTR1 of Rhizopus oryzae","authors":"","doi":"10.1016/j.crmicr.2024.100270","DOIUrl":"10.1016/j.crmicr.2024.100270","url":null,"abstract":"<div><p><em>Rhizopus oryzae</em> is one of the major causative agents of mucormycosis. The disease has a poor prognosis with a high mortality rate, and resistance towards current antifungal drugs poses additional concern. The disease treatment is complicated with antifungals; therefore, surgical approach is preferred in many cases. A comprehensive understanding of the pathogenicity-associated virulence factors of <em>R. oryzae</em> is essential to develop new antifungals against this fungus. Virulence factors in <em>R. oryzae</em> include cell wall proteins, spore germination proteins and enzymes that evade host immunity. The spore coat protein (CotH3) and high-affinity iron permease (FTR1) have been identified as promising therapeutic targets in <em>R. oryzae. In-silico</em> screening is a preferred approach to identify hit molecules for further <em>in-vitro</em> studies. In the present study, twelve bioactive molecules were docked within the active site of CotH3 and FTR1. Further, molecular dynamics simulation analysis of best-docked protein-ligand structures revealed the dynamics information of their stability in the biological system. Eugenol and isoeugenol exhibited significant binding scores with both the protein targets of <em>R. oryzae</em> and followed the Lipinski rule of drug-likeness. To corroborate the <em>in-silico</em> results, <em>in-vitro</em> studies were conducted using bioactive compounds eugenol, isoeugenol, and myristicin against <em>R. oryzae</em> isolated from the soil sample. Eugenol, isoeugenol exhibited antifungal activity at 156 µg/mL whereas myristicin at 312 µg/mL. Hence, the study suggested that eugenol and isoeugenol could be explored further as potential antifungal molecules against <em>R. oryzae.</em></p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266651742400052X/pdfft?md5=0be4c09fe3d623d1a0dfb85a9787b401&pid=1-s2.0-S266651742400052X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The terroir of Tempeh: Strong region-specific signatures in the bacterial community structures across Indonesia","authors":"","doi":"10.1016/j.crmicr.2024.100287","DOIUrl":"10.1016/j.crmicr.2024.100287","url":null,"abstract":"<div><div>Tempeh, a soybean product from Indonesia, is created through fermentation by <em>Rhizopus</em> spp. and associated bacteria. Here, we aim to get an overview of the variability of the tempeh microbiota across Indonesia and disentangle influencing factors. We found high variability in bacterial abundance (10<sup>3</sup> – 10<sup>9</sup> copies g<sup>-1</sup>), richness (n<sub>ASV</sub> = 40 – 175 ASVs), and diversity (H’ = 0.9 – 3.5) in tempeh. The primary factor affecting this variation was the region, where the tempeh was produced. Interestingly, tempeh samples obtained from geographically close areas tended to share similar bacterial profiles, suggesting a \"terroir\" of tempeh. Additionally, tempeh wrapped in banana leaves had a higher abundance of enterobacteria in comparison to tempeh wrapped in plastic but also tended to have a higher total bacterial and lactobacilli abundance. Despite all variability, the tempeh core microbiome consists <em>Lactobacillales</em> and <em>Enterobacteriales.</em> This study demonstrates a high variability of bacterial diversity in traditional tempeh from local producers highlighting a strong regional influence across Indonesia.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the genetic progression of MDR1 in Plasmodium falciparum: A decade of multi-regional genetic analysis (2014–2024)","authors":"","doi":"10.1016/j.crmicr.2024.100304","DOIUrl":"10.1016/j.crmicr.2024.100304","url":null,"abstract":"<div><h3>Background</h3><div>The genetic progression of the MDR1 gene in <em>Plasmodium falciparum</em>, a key factor in drug resistance, presents significant challenges for malaria control. This study aims to elucidate the genetic diversity and evolutionary dynamics of P. falciparum, particularly focusing on the MDR1 gene across multi-regional populations. To analyze the genetic diversity of P. falciparum MDR1 gene across various multi-regional populations between 2014 and 2024, assessing allelic richness, genetic distances, and evolutionary patterns.</div></div><div><h3>Methods</h3><div>We conducted an extensive genetic analysis using methods such as Analysis of Molecular Variance (AMOVA), pairwise population matrices of Nei unbiased genetic distance and identity, PhiPT and Phi'PT values, and Principal Coordinates Analysis (PCoA). The study covered diverse P. falciparum populations from India, Nigeria, Ethiopia, Honduras, China, and Cameroon.</div></div><div><h3>Findings</h3><div>Our findings reveal significant genetic heterogeneity in the MDR1 gene. Populations like India: Odisha (2014) exhibited high allelic richness, indicating diverse drug resistance profiles. Notable genetic divergence was observed, especially between India (2016) and Nigeria (2020), suggesting different evolutionary trajectories in drug resistance. The PCoA analysis highlighted the multi-dimensional genetic variation, reflecting the complex interplay of factors influencing drug resistance in P. falciparum.</div></div><div><h3>Interpretation</h3><div>The comprehensive analysis of P. falciparum's MDR1 gene provides crucial insights into the multi-regional patterns of drug resistance. This knowledge is essential for developing effective malaria control measures and adapting treatment strategies to the evolving genetic diversity of the parasite.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strigolactone GR24-mediated mitigation of phosphorus deficiency through mycorrhization in aerobic rice","authors":"Debasis Mitra , Periyasamy Panneerselvam , Parameswaran Chidambaranathan , Amaresh Kumar Nayak , Ankita Priyadarshini , Ansuman Senapati , Pradeep Kumar Das Mohapatra","doi":"10.1016/j.crmicr.2024.100229","DOIUrl":"https://doi.org/10.1016/j.crmicr.2024.100229","url":null,"abstract":"<div><p>Strigolactones (SLs) are a new class of plant hormones that play a significant role in regulating various aspects of plant growth promotion, stress tolerance and influence the rhizospheric microbiome. GR24 is a synthetic SL analog used in scientific research to understand the effects of SL on plants and to act as a plant growth promoter. This study aimed to conduct hormonal seed priming at different concentrations of GR24 (0.1, 0.5, 1.0, 5.0 and 10.0 µM with and without arbuscular mycorrhizal fungi (AMF) inoculation in selected aerobic rice varieties (CR Dhan 201, CR Dhan 204, CR Dhan 205, and CR Dhan 207), Kasalath-IC459373 (P-tolerant check), and IR-36 (P-susceptible check) under phosphorus (P)-deficient conditions to understand the enhancement of growth and priming effects in mycorrhization. Our findings showed that seed priming with 5.0 µM SL GR24 enhanced the performance of mycorrhization in CR Dhan 205 (88.91 %), followed by CR Dhan 204 and 207, and AMF sporulation in CR Dhan 201 (31.98 spores / 10 gm soil) and CR Dhan 207 (30.29 spores / 10 g soil), as well as rice growth. The study showed that the highly responsive variety CR Dhan 207 followed by CR Dhan 204, 205, 201, and Kasalath IC459373 showed higher P uptake than the control, and AMF treated with 5.0 µM SL GR24 varieties CR Dhan 205 followed by CR Dhan 207 and 204 showed the best performance in plant growth, chlorophyll content, and soil functional properties, such as acid and alkaline phosphatase activity, soil microbial biomass carbon (MBC), dehydrogenase activity (DHA), and fluorescein diacetate activity (FDA). Overall, AMF intervention with SL GR24 significantly increased plant growth, soil enzyme activity, and uptake of P compared to the control. Under P-deficient conditions, seed priming with 5.0 µM strigolactone GR24 and AMF inoculum significantly increased selected aerobic rice growth, P uptake, and soil enzyme activities. Application of SLs formulations with AMF inoculum in selected aerobic rice varieties, CR Dhan 207, CR Dhan 204, and CR Dhan 205, will play an important role in mycorrhization, growth, and enhancement of P utilization under P- nutrient deficient conditions.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666517424000117/pdfft?md5=4a3ac5c456b421198ad5ce72c16433a4&pid=1-s2.0-S2666517424000117-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140122704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}