Quantum ReportsPub Date : 2023-04-28DOI: 10.3390/quantum5020034
C. A. Bédard
{"title":"Teleportation Revealed","authors":"C. A. Bédard","doi":"10.3390/quantum5020034","DOIUrl":"https://doi.org/10.3390/quantum5020034","url":null,"abstract":"Quantum teleportation is the name of a problem: How can the real-valued parameters encoding the state at Alice’s location make their way to Bob’s location via shared entanglement and only two bits of classical communication? Without an explanation, teleportation appears to be a conjuring trick. Investigating the phenomenon with Schrödinger states and reduced density matrices shall always leave loose ends because they are not local and complete descriptions of quantum systems. Upon demonstrating that the Heisenberg picture admits a local and complete description, Deutsch and Hayden rendered its explanatory power manifest by revealing the trick behind teleportation, namely, by providing an entirely local account. Their analysis is re-exposed and further developed.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41563632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum ReportsPub Date : 2023-04-26DOI: 10.3390/quantum5020026
Dustin Lazarovici
{"title":"How Everett Solved the Probability Problem in Everettian Quantum Mechanics","authors":"Dustin Lazarovici","doi":"10.3390/quantum5020026","DOIUrl":"https://doi.org/10.3390/quantum5020026","url":null,"abstract":"A longstanding issue in the Everettian (Many-Worlds) interpretation is to justify and make sense of the Born rule that underlies the statistical predictions of standard quantum mechanics. The paper offers a reappraisal of Everett’s original account in light of the recent literature on the concept of typicality. It argues that Everett’s derivation of the Born rule is sound and, in a certain sense, even an optimal result, and defends it against the charge of circularity. The conclusion is that Everett’s typicality argument can successfully ground post-factum explanations of Born statistics, while questions remain about the predictive power of the Many-Worlds interpretation.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49465605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum ReportsPub Date : 2023-04-18DOI: 10.3390/quantum5020023
Michael Huber
{"title":"Defending Many Worlds via Case Discrimination: An Attempt to Showcase the Conceptual Incoherence of Anti-Realist Interpretations and Relational Quantum Mechanics","authors":"Michael Huber","doi":"10.3390/quantum5020023","DOIUrl":"https://doi.org/10.3390/quantum5020023","url":null,"abstract":"In this work, an alternative attempt to motivate the Many-Worlds Interpretation (MWI) is undertaken. The usual way of arguing for MWI mostly revolves around how it might solve the measurement problem in a more straightforward and concise manner than rival interpretations. However, here an effort is made to defend MWI in an indirect manner, namely via repeated case discrimination and a process of ‘conceptual elimination’. That is, it will be argued that its major rivals, with QBism and Relational Quantum-Mechanics being among the most noteworthy ones, either face conceptual incoherence or conceptually collapse into a variant of MWI. Finally, it is argued that hidden-variable theories face severe challenges when being applied to Quantum Field Theory such that appropriate modifications may lead back to MWI, thereby purportedly leaving MWI as the only viable option.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49009011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum ReportsPub Date : 2023-04-06DOI: 10.3390/quantum5020022
P. Deymier, K. Runge, M. A. Hasan, T. Lata, J. Levine
{"title":"Tuning Logical Phi-Bit State Vectors in an Externally Driven Nonlinear Array of Acoustic Waveguides via Drivers’ Phase","authors":"P. Deymier, K. Runge, M. A. Hasan, T. Lata, J. Levine","doi":"10.3390/quantum5020022","DOIUrl":"https://doi.org/10.3390/quantum5020022","url":null,"abstract":"We experimentally navigate the Hilbert space of two logical phi-bits supported by an externally driven nonlinear array of coupled acoustic waveguides by parametrically changing the relative phase of the drivers. We observe sharp phase jumps of approximately 180° in the individual phi-bit states as a result of the phase tuning of the drivers. The occurrence of these sharp phase jumps varies from phi-bit to phi-bit. All phi-bit phases also possess a common background dependency on the drivers’ phase. Within the context of multiple time scale perturbation theory, we develop a simple model of the nonlinear array of externally driven coupled acoustic waveguides to shed light on the possible mechanisms for the experimentally observed behavior of the logical phi-bit phase. Finally, we illustrate the ability to experimentally initialize the state of single- and multiple- phi-bit systems by exploiting the drivers’ phase as a tuning parameter. We also show that the nonlinear correlation between phi-bits enables parallelism in the manipulation of two- and multi-phi-bit superpositions of states.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42040541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum ReportsPub Date : 2023-03-21DOI: 10.3390/quantum5010020
J. L. Romero, A. Klimov
{"title":"Asymptotic Quantization of a Particle on a Sphere","authors":"J. L. Romero, A. Klimov","doi":"10.3390/quantum5010020","DOIUrl":"https://doi.org/10.3390/quantum5010020","url":null,"abstract":"Quantum systems whose states are tightly distributed among several invariant subspaces (variable spin systems) can be described in terms of distributions in a four-dimensional phase-space T∗S2 in the limit of large average angular momentum. The cotangent bundle T∗S2 is also the classical manifold for systems with E(3) symmetry group with appropriately fixed Casimir operators. This allows us to employ the asymptotic form of the star-product proper for variable (integer) spin systems to develop a deformation quantization scheme for a particle moving on the two-dimensional sphere, whose observables are elements of e(3) algebra and the corresponding phase-space is T∗S2. We show that the standard commutation relations of the e(3) algebra are recovered from the corresponding classical Poisson brackets and the explicit expressions for the eigenvalues and eigenfunctions of some quantized classical observables (such as the angular momentum operators and their squares) are obtained.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45579749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum ReportsPub Date : 2023-03-21DOI: 10.3390/quantum5010021
Isaac Wilhelm
{"title":"Centering the Born Rule","authors":"Isaac Wilhelm","doi":"10.3390/quantum5010021","DOIUrl":"https://doi.org/10.3390/quantum5010021","url":null,"abstract":"The centered Everett interpretation solves a problem that various approaches to quantum theory face. In this paper, I continue developing the theory underlying that solution. In particular, I defend the centered Everett interpretation against a few objections, and I provide additional motivation for some of its key features.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49027021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum ReportsPub Date : 2023-03-16DOI: 10.3390/quantum5020025
Dana Vaknin Ben Porath, E. Cohen
{"title":"Leggett–Garg-like Inequalities from a Correlation Matrix Construction","authors":"Dana Vaknin Ben Porath, E. Cohen","doi":"10.3390/quantum5020025","DOIUrl":"https://doi.org/10.3390/quantum5020025","url":null,"abstract":"The Leggett–Garg Inequality (LGI) constrains, under certain fundamental assumptions, the correlations between measurements of a quantity Q at different times. Here, we analyze the LGI and propose similar but somewhat more elaborate inequalities, employing a technique that utilizes the mathematical properties of correlation matrices, which was recently proposed in the context of nonlocal correlations. We also find that this technique can be applied to inequalities that combine correlations between different times (as in LGI) and correlations between different locations (as in Bell inequalities). All the proposed bounds include additional correlations compared to the original ones and also lead to a particular form of complementarity. A possible experimental realization and some applications are briefly discussed.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44409817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum ReportsPub Date : 2023-03-15DOI: 10.3390/quantum5010019
O. Mikhailov, D. Chachkov
{"title":"Molecular Structure of M(N13) Compounds with 12-Membered Nitrogen-Containing Cycle and Axial Nitrogen Atom (M = Mn, Fe): Quantum-Chemical Design by DFT Method","authors":"O. Mikhailov, D. Chachkov","doi":"10.3390/quantum5010019","DOIUrl":"https://doi.org/10.3390/quantum5010019","url":null,"abstract":"Based on the results of a quantum chemical calculation using the DFT method in the B3PW91/TZVP, OPBE/TZVP, M06/TZVP, and M062/Def2TZVP levels, the possibility of the existence of M(N13) chemical compounds (M = Mn, Fe) that are unknown for these elements has been predicted. Data on the structural parameters, the multiplicity of the ground state, APT and NBO analysis, and standard thermodynamic parameters of formation (standard enthalpy ΔfH0, entropy S0, and Gibbs’s energy ΔfG0) for these compounds are presented.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42294583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum ReportsPub Date : 2023-03-06DOI: 10.3390/quantum5010017
M. Slepchenkov, P. Barkov, O. Glukhova
{"title":"Quantum Study of the Optical Conductivity of Composite Films Formed by Bilayer Graphene and Single-Walled Carbon Nanotubes under Axial Stretching","authors":"M. Slepchenkov, P. Barkov, O. Glukhova","doi":"10.3390/quantum5010017","DOIUrl":"https://doi.org/10.3390/quantum5010017","url":null,"abstract":"In this article, quantum methods are used to study the optical properties of composite films formed by AB-stacked bilayer graphene and chiral single-walled carbon nanotubes (SWCNT) (12, 6) with a diameter of 1.2 nm. The analysis of optical properties is carried out on the basis of the results of calculating the diagonal elements of complex optical conductivity tensor in the wavelength range of 0.2–2 μm. Two cases of electromagnetic radiation polarization are considered: along the X axis (along the graphene bilayer) and along the Y axis (along the nanotube axis). The calculations are performed for three topological models (V1, V2, V3) of composite films, which differ in the width of the graphene bilayer and in the value of the shift between graphene layers. It is found that in the case of polarization along the X axis, the profile of the real part of optical conductivity in the region of extremal and middle UV radiation is determined by SWCNT (12, 6), and in the region of near UV and visible radiations, it is determined by bilayer graphene. In the case of polarization along the Y axis, the profile of the real part of optical conductivity in the region of extremal, near UV, and visible radiation is determined by SWCNT (12, 6), and in the region of the mid-UV range, it is determined by bilayer graphene. Regularities in the change in the profile of the surface optical conductivity of bilayer graphene-SWCNT (12,6) composite films under the action of stretching deformation along the Y axis are revealed. For models V1 (width of the graphene nanoribbon is 0.5 nm, the shift between layers is 0.48 nm) and V2 (width of the graphene nanoribbon is 0.71 nm, the shift between layers is 0.27 nm), the shift of the conductivity peaks in the region of extreme UV radiation along the wavelength to the right is shown. For the model V3 (width of the graphene nanoribbon is 0.92 nm, the shift between layers is 0.06 nm), the shift of the conductivity peaks to the right along the wavelength is observed not only in the region of extreme UV radiation, but also in the region of visible radiation. It is assumed that graphene-SWCNT (12,6) composite films with island topology are promising materials for photodetectors in the UV-visible and near-IR ranges.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41812313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum ReportsPub Date : 2023-03-02DOI: 10.3390/quantum5010016
P. Tappenden
{"title":"Set Theory and Many Worlds","authors":"P. Tappenden","doi":"10.3390/quantum5010016","DOIUrl":"https://doi.org/10.3390/quantum5010016","url":null,"abstract":"The 2022 Tel Aviv conference on the many-worlds interpretation of quantum mechanics highlighted many differences between theorists. A very significant dichotomy is between Everettian fission (splitting) and Saunders–Wallace–Wilson divergence. For fission, an observer may have multiple futures, whereas for divergence they always have a single future. Divergence was explicitly introduced to resolve the problem of pre-measurement uncertainty for Everettian theory, which is universally believed to be absent for fission. Here I maintain that there is indeed pre-measurement uncertainty prior to fission, so long as objective probability is a property of Everettian branches. This is made possible if the universe is a set and branches are subsets with a probability measure. A universe that is a set of universes that are macroscopically isomorphic and span all possible configurations of local beäbles fulfills that role. If objective probability is a property of branches, then a successful Deutsch–Wallace decision-theoretic argument would justify the Principal Principle and be part of probability theory rather than specific to many-worlds theory. Any macroscopic object in our environment becomes a set of isomorphs with different microscopic configurations, each in an elemental universe (elemental in the set-theoretic sense). This is similar to the many-interacting-worlds theory, but the observer inhabits the set of worlds, not an individual world. An observer has many elemental bodies.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45966058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}