{"title":"Guided Conditional Diffusion Classifier (ConDiff) for Enhanced Prediction of Infection in Diabetic Foot Ulcers","authors":"Palawat Busaranuvong;Emmanuel Agu;Deepak Kumar;Shefalika Gautam;Reza Saadati Fard;Bengisu Tulu;Diane Strong","doi":"10.1109/OJEMB.2024.3453060","DOIUrl":"10.1109/OJEMB.2024.3453060","url":null,"abstract":"<italic>Goal:</i>\u0000 To accurately detect infections in Diabetic Foot Ulcers (DFUs) using photographs taken at the Point of Care (POC). Achieving high performance is critical for preventing complications and amputations, as well as minimizing unnecessary emergency department visits and referrals. \u0000<italic>Methods:</i>\u0000 This paper proposes the Guided Conditional Diffusion Classifier (ConDiff). This novel deep-learning framework combines guided image synthesis with a denoising diffusion model and distance-based classification. The process involves (1) generating guided conditional synthetic images by injecting Gaussian noise to a guide (input) image, followed by denoising the noise-perturbed image through a reverse diffusion process, conditioned on infection status and (2) classifying infections based on the minimum Euclidean distance between synthesized images and the original guide image in embedding space. \u0000<italic>Results:</i>\u0000 ConDiff demonstrated superior performance with an average accuracy of 81% that outperformed state-of-the-art (SOTA) models by at least 3%. It also achieved the highest sensitivity of 85.4%, which is crucial in clinical domains while significantly improving specificity to 74.4%, surpassing the best SOTA model. \u0000<italic>Conclusions:</i>\u0000 ConDiff not only improves the diagnosis of DFU infections but also pioneers the use of generative discriminative models for detailed medical image analysis, offering a promising approach for improving patient outcomes.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"20-27"},"PeriodicalIF":2.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663215","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of Survival in Patients With Esophageal Cancer After Immunotherapy Based on Small-Size Follow-Up Data","authors":"Yuhan Su;Chaofeng Huang;Chen Yang;Qin Lin;Zhong Chen","doi":"10.1109/OJEMB.2024.3452983","DOIUrl":"10.1109/OJEMB.2024.3452983","url":null,"abstract":"Esophageal cancer (EC) poses a significant health concern, particularly among the elderly, warranting effective treatment strategies. While immunotherapy holds promise in activating the immune response against tumors, its specific impact and associated reactions in EC patients remain uncertain. Precise prognosis prediction becomes crucial for guiding appropriate interventions. This study, based on data from the First Affiliated Hospital of Xiamen University (January 2017 to May 2021), focuses on 113 EC patients undergoing immunotherapy. The primary objectives are to elucidate the effectiveness of immunotherapy in EC treatment and to introduce a stacking ensemble learning method for predicting the survival of EC patients who have undergone immunotherapy, in the context of small sample sizes, addressing the imperative of supporting clinical decision-making for healthcare professionals. Our method incorporates five sub-learners and one meta-learner. Leveraging optimal features from the training dataset, this approach achieved compelling accuracy (89.13%) and AUC (88.83%) in predicting three-year survival status, surpassing conventional techniques. The model proves efficient in guiding clinical decisions, especially in scenarios with small-size follow-up data.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"769-782"},"PeriodicalIF":2.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663258","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Corvini;Michail Arvanitidis;Deborah Falla;Silvia Conforto
{"title":"Novel Metrics for High-Density sEMG Analysis in the Time–Space Domain During Sustained Isometric Contractions","authors":"Giovanni Corvini;Michail Arvanitidis;Deborah Falla;Silvia Conforto","doi":"10.1109/OJEMB.2024.3449548","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3449548","url":null,"abstract":"<italic>Goal:</i>\u0000 This study introduces a novel approach to examine the temporal-spatial information derived from High-Density surface Electromyography (HD-sEMG). By integrating and adapting postural control parameters into a framework for the analysis of myoelectrical activity, new metrics to evaluate muscle fatigue progression were proposed, investigating their ability to predict endurance time. \u0000<italic>Methods:</i>\u0000 Nine subjects performed a fatiguing isometric contraction of the lumbar erector spinae. Topographical amplitude maps were generated from two HD-sEMG grids. Once identified the coordinates of the muscle activity, novel metrics for quantifying the muscle spatial distribution over time were calculated. \u0000<italic>Results:</i>\u0000 Spatial metrics showed significant differences from beginning to end of the contraction, highlighting their ability of characterizing the neuromuscular adaptations in presence of fatigue. Additionally, linear regression models revealed strong correlations between these spatial metrics and endurance time. \u0000<italic>Conclusions:</i>\u0000 These innovative metrics can characterize the spatial distribution of muscle activity and predict the time of task failure.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"760-768"},"PeriodicalIF":2.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646524","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrections to “Sparse Multichannel Decomposition of Electrodermal Activity With Physiological Priors”","authors":"Samiul Alam;Md. Rafiul Amin;Rose T. Faghih","doi":"10.1109/OJEMB.2024.3444428","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3444428","url":null,"abstract":"Presents corrections to the article “Sparse Multichannel Decomposition of Electrodermal Activity With Physiological Priors”.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"759-759"},"PeriodicalIF":2.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646596","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the Special Section on Computational Modeling and Digital Twin Technology in Biomedical Engineering","authors":"Marianna Laviola","doi":"10.1109/OJEMB.2024.3428898","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3428898","url":null,"abstract":"","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"607-610"},"PeriodicalIF":2.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10637907","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enrico Mattana;Matteo Bruno Lodi;Marco Simone;Giuseppe Mazzarella;Alessandro Fanti
{"title":"Cole–Cole Model for the Dielectric Characterization of Healthy Skin and Basal Cell Carcinoma at THz Frequencies","authors":"Enrico Mattana;Matteo Bruno Lodi;Marco Simone;Giuseppe Mazzarella;Alessandro Fanti","doi":"10.1109/OJEMB.2024.3438562","DOIUrl":"10.1109/OJEMB.2024.3438562","url":null,"abstract":"THz radiationeffectively probes biological tissue water content due to its high sensibility to polar molecules. Skin and basal cell carcinoma (BCC), both rich in water, have been extensively studied in the THz range. Typically, the Double Debye model is used to study their dielectric permittivity. This work focuses on the viability of the multipole Cole-Cole model as an alternative dielectric model. To determine the best fit parameters, we used a genetic algorithm-based approach, solving a least squares problem. Compared with the Double Debye model, a maximum reduction of the RMSE value up to more than 50% and maximum relative percentage errors of 2.8% have been measured for both second and third order Cole-Cole models. Since the errors of the second and third order Cole-Cole models are similar, a two-poles model is enough to describe the behaviour both tissues from 0.2 THz to 2 THz.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"600-606"},"PeriodicalIF":2.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623268","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Chansaengsri, B. Tunhoo, K. Onlaor, T. Thiwawong
{"title":"Developing a Vital Signal Detection Electrode for Fabric Substrate Using a High-Performance Conductive Carbon-Based Ink","authors":"K. Chansaengsri, B. Tunhoo, K. Onlaor, T. Thiwawong","doi":"10.1109/ojemb.2024.3431030","DOIUrl":"https://doi.org/10.1109/ojemb.2024.3431030","url":null,"abstract":"","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"13 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nelson V. Barnett;Alec Hoyland;Divya A. Chari;Benjamin Parrell;Adam C. Lammert
{"title":"Reverse Correlation Characterizes More Complete Tinnitus Spectra in Patients","authors":"Nelson V. Barnett;Alec Hoyland;Divya A. Chari;Benjamin Parrell;Adam C. Lammert","doi":"10.1109/OJEMB.2024.3427318","DOIUrl":"10.1109/OJEMB.2024.3427318","url":null,"abstract":"<italic>Goal:</i>\u0000 We validate a recent reverse correlation approach to tinnitus characterization by applying it to individuals with clinically-diagnosed tinnitus. \u0000<italic>Methods:</i>\u0000 Two tinnitus patients assessed the subjective similarity of their non-tonal tinnitus percepts and random auditory stimuli. Regression of the responses onto the stimuli yielded reconstructions which were evaluated qualitatively by playing back resynthesized waveforms to the subjects and quantitatively by response prediction analysis. \u0000<italic>Results:</i>\u0000 Subject 1 preferred their resynthesis to white noise; subject 2 did not. Response prediction balanced accuracies were significantly higher than chance across subjects: subject 1: 0.5963, subject 2: 0.6922. \u0000<italic>Conclusion:</i>\u0000 Reverse correlation can provide the foundation for reconstructing accurate representations of complex, non-tonal tinnitus in clinically diagnosed subjects. Further refinements may yield highly similar waveforms to individualized tinnitus percepts.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"589-592"},"PeriodicalIF":2.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10602769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Filippo Agnesi;Lucia Carlucci;Gia Burjanadze;Fabio Bernini;Khatia Gabisonia;John W Osborn;Silvestro Micera;Fabio A. Recchia
{"title":"Complex Hemodynamic Responses to Trans-Vascular Electrical Stimulation of the Renal Nerve in Anesthetized Pigs","authors":"Filippo Agnesi;Lucia Carlucci;Gia Burjanadze;Fabio Bernini;Khatia Gabisonia;John W Osborn;Silvestro Micera;Fabio A. Recchia","doi":"10.1109/OJEMB.2024.3429294","DOIUrl":"10.1109/OJEMB.2024.3429294","url":null,"abstract":"The objective of this study was to characterize hemodynamic changes during trans-vascular stimulation of the renal nerve and their dependence on stimulation parameters. We employed a stimulation catheter inserted in the right renal artery under fluoroscopic guidance, in pigs. Systolic, diastolic and pulse blood pressure and heart rate were recorded during stimulations delivered at different intravascular sites along the renal artery or while varying stimulation parameters (amplitude, frequency, and pulse width). Blood pressure changes during stimulation displayed a pattern more complex than previously described in literature, with a series of negative and positive peaks over the first two minutes, followed by a steady state elevation during the remainder of the stimulation. Pulse pressure and heart rate only showed transient responses, then they returned to baseline values despite constant stimulation. The amplitude of the evoked hemodynamic response was roughly linearly correlated with stimulation amplitude, frequency, and pulse width.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"750-758"},"PeriodicalIF":2.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10601543","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ghufran A. Alsalloum;Nour M. Al Sawaftah;Kelly M. Percival;Ghaleb A. Husseini
{"title":"Digital Twins of Biological Systems: A Narrative Review","authors":"Ghufran A. Alsalloum;Nour M. Al Sawaftah;Kelly M. Percival;Ghaleb A. Husseini","doi":"10.1109/OJEMB.2024.3426916","DOIUrl":"10.1109/OJEMB.2024.3426916","url":null,"abstract":"The concept of Digital Twins (DTs), software models that mimic the behavior and interactions of physical or conceptual objects within their environments, has gained traction in recent years, particularly in medicine and healthcare research. DTs technology emerges as a pivotal tool in disease modeling, integrating diverse data sources to computationally model dynamic biological systems. This narrative review explores potential DT applications in medicine, from defining DTs and their history to constructing DTs, modeling biologically relevant systems, as well as discussing the benefits, risks, and challenges in their application. The influence of DTs extends beyond healthcare and can revolutionize healthcare management, drug development, clinical trials, and various biomedical research fields","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"670-677"},"PeriodicalIF":2.7,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10596666","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141610970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}