Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Muhammed Halil Akpinar;Abdulkadir Sengur;Massimo Salvi;Silvia Seoni;Oliver Faust;Hasan Mir;Filippo Molinari;U. Rajendra Acharya
{"title":"Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies","authors":"Muhammed Halil Akpinar;Abdulkadir Sengur;Massimo Salvi;Silvia Seoni;Oliver Faust;Hasan Mir;Filippo Molinari;U. Rajendra Acharya","doi":"10.1109/OJEMB.2024.3508472","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GANs) have emerged as a powerful tool in artificial intelligence, particularly for unsupervised learning. This systematic review analyzes GAN applications in healthcare, focusing on image and signal-based studies across various clinical domains. Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we reviewed 72 relevant journal articles. Our findings reveal that magnetic resonance imaging (MRI) and electrocardiogram (ECG) signal acquisition techniques were most utilized, with brain studies (22%), cardiology (18%), cancer (15%), ophthalmology (12%), and lung studies (10%) being the most researched areas. We discuss key GAN architectures, including cGAN (31%) and CycleGAN (18%), along with datasets, evaluation metrics, and performance outcomes. The review highlights promising data augmentation, anonymization, and multi-task learning results. We identify current limitations, such as the lack of standardized metrics and direct comparisons, and propose future directions, including the development of no-reference metrics, immersive simulation scenarios, and enhanced interpretability.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"183-192"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770591","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10770591/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Generative Adversarial Networks (GANs) have emerged as a powerful tool in artificial intelligence, particularly for unsupervised learning. This systematic review analyzes GAN applications in healthcare, focusing on image and signal-based studies across various clinical domains. Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we reviewed 72 relevant journal articles. Our findings reveal that magnetic resonance imaging (MRI) and electrocardiogram (ECG) signal acquisition techniques were most utilized, with brain studies (22%), cardiology (18%), cancer (15%), ophthalmology (12%), and lung studies (10%) being the most researched areas. We discuss key GAN architectures, including cGAN (31%) and CycleGAN (18%), along with datasets, evaluation metrics, and performance outcomes. The review highlights promising data augmentation, anonymization, and multi-task learning results. We identify current limitations, such as the lack of standardized metrics and direct comparisons, and propose future directions, including the development of no-reference metrics, immersive simulation scenarios, and enhanced interpretability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信