{"title":"Design and Validation of a Tripping-Eliciting Platform Based on Compliant Random Obstacles","authors":"Eugenio Anselmino;Lorenzo Pittoni;Tommaso Ciapetti;Michele Piazzini;Claudio Macchi;Alberto Mazzoni;Silvestro Micera;Arturo Forner-Cordero","doi":"10.1109/OJEMB.2024.3493619","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i>\n The experimental study of the stumble phenomena is essential to develop novel technological solutions to limit harmful effects in at-risk populations. A versatile platform to deliver realistic and unanticipated tripping perturbations, controllable in their strength and timing, would be beneficial for this field of study. \n<italic>Methods:</i>\n We built a modular tripping-eliciting system based on multiple compliant trip blocks that deliver unanticipated tripping perturbations. The system was validated with a study with 9 healthy subjects. \n<italic>Results:</i>\n The system delivered 33 out of 34 perturbations (a minimum of 3 per subject) during the desired gait phase, and 31 effectively induced a tripping event. The recovery strategies adopted after the perturbations were qualitatively consistent with the literature. The analysis of the inertial motion unit signals and the questionnaires suggests a limited adaptation to the perturbation throughout experiments. \n<italic>Conclusions:</i>\n The platform succeeded in providing realistic trip perturbations, concurrently limiting subjects’ adaptation. The presence of multiple compliant obstacles, tunable regarding position and perturbation strength, represents a novelty in the field, allowing the study of stumbling phenomena caused by obstacles with different levels of sturdiness. The overall system is modular and can be easily adapted for different applications.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"168-175"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747760","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10747760/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Goal:
The experimental study of the stumble phenomena is essential to develop novel technological solutions to limit harmful effects in at-risk populations. A versatile platform to deliver realistic and unanticipated tripping perturbations, controllable in their strength and timing, would be beneficial for this field of study.
Methods:
We built a modular tripping-eliciting system based on multiple compliant trip blocks that deliver unanticipated tripping perturbations. The system was validated with a study with 9 healthy subjects.
Results:
The system delivered 33 out of 34 perturbations (a minimum of 3 per subject) during the desired gait phase, and 31 effectively induced a tripping event. The recovery strategies adopted after the perturbations were qualitatively consistent with the literature. The analysis of the inertial motion unit signals and the questionnaires suggests a limited adaptation to the perturbation throughout experiments.
Conclusions:
The platform succeeded in providing realistic trip perturbations, concurrently limiting subjects’ adaptation. The presence of multiple compliant obstacles, tunable regarding position and perturbation strength, represents a novelty in the field, allowing the study of stumbling phenomena caused by obstacles with different levels of sturdiness. The overall system is modular and can be easily adapted for different applications.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.