Machine Learning Science and Technology最新文献

筛选
英文 中文
End-to-end simulation of particle physics events with flow matching and generator oversampling 利用流量匹配和发生器超采样对粒子物理事件进行端到端模拟
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-07-09 DOI: 10.1088/2632-2153/ad563c
F Vaselli, F Cattafesta, P Asenov, A Rizzi
{"title":"End-to-end simulation of particle physics events with flow matching and generator oversampling","authors":"F Vaselli, F Cattafesta, P Asenov, A Rizzi","doi":"10.1088/2632-2153/ad563c","DOIUrl":"https://doi.org/10.1088/2632-2153/ad563c","url":null,"abstract":"The simulation of high-energy physics collision events is a key element for data analysis at present and future particle accelerators. The comparison of simulation predictions to data allows looking for rare deviations that can be due to new phenomena not previously observed. We show that novel machine learning algorithms, specifically Normalizing Flows and Flow Matching, can be used to replicate accurate simulations from traditional approaches with several orders of magnitude of speed-up. The classical simulation chain starts from a physics process of interest, computes energy deposits of particles and electronics response, and finally employs the same reconstruction algorithms used for data. Eventually, the data are reduced to some high-level analysis format. Instead, we propose an end-to-end approach, simulating the final data format directly from physical generator inputs, skipping any intermediate steps. We use particle jets simulation as a benchmark for comparing both <italic toggle=\"yes\">discrete</italic> and <italic toggle=\"yes\">continuous</italic> Normalizing Flows models. The models are validated across a variety of metrics to identify the most accurate. We discuss the scaling of performance with the increase in training data, as well as the generalization power of these models on physical processes different from the training one. We investigate sampling multiple times from the same physical generator inputs, a procedure we name <italic toggle=\"yes\">oversampling</italic>, and we show that it can effectively reduce the statistical uncertainties of a dataset. This class of ML algorithms is found to be capable of learning the expected detector response independently of the physical input process. The speed and accuracy of the models, coupled with the stability of the training procedure, make them a compelling tool for the needs of current and future experiments.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"38 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141573283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty quantification by direct propagation of shallow ensembles 通过直接传播浅层集合量化不确定性
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-07-04 DOI: 10.1088/2632-2153/ad594a
Matthias Kellner and Michele Ceriotti
{"title":"Uncertainty quantification by direct propagation of shallow ensembles","authors":"Matthias Kellner and Michele Ceriotti","doi":"10.1088/2632-2153/ad594a","DOIUrl":"https://doi.org/10.1088/2632-2153/ad594a","url":null,"abstract":"Statistical learning algorithms provide a generally-applicable framework to sidestep time-consuming experiments, or accurate physics-based modeling, but they introduce a further source of error on top of the intrinsic limitations of the experimental or theoretical setup. Uncertainty estimation is essential to quantify this error, and to make application of data-centric approaches more trustworthy. To ensure that uncertainty quantification is used widely, one should aim for algorithms that are accurate, but also easy to implement and apply. In particular, including uncertainty quantification on top of an existing architecture should be straightforward, and add minimal computational overhead. Furthermore, it should be easy to manipulate or combine multiple machine-learning predictions, propagating uncertainty over further modeling steps. We compare several well-established uncertainty quantification frameworks against these requirements, and propose a practical approach, which we dub direct propagation of shallow ensembles, that provides a good compromise between ease of use and accuracy. We present benchmarks for generic datasets, and an in-depth study of applications to the field of atomistic machine learning for chemistry and materials. These examples underscore the importance of using a formulation that allows propagating errors without making strong assumptions on the correlations between different predictions of the model.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"13 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AMCG: a graph dual atomic-molecular conditional molecular generator AMCG:图双原子-分子条件分子发生器
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-07-04 DOI: 10.1088/2632-2153/ad5bbf
Carlo Abate, Sergio Decherchi and Andrea Cavalli
{"title":"AMCG: a graph dual atomic-molecular conditional molecular generator","authors":"Carlo Abate, Sergio Decherchi and Andrea Cavalli","doi":"10.1088/2632-2153/ad5bbf","DOIUrl":"https://doi.org/10.1088/2632-2153/ad5bbf","url":null,"abstract":"Drug design is both a time consuming and expensive endeavour. Computational strategies offer viable options to address this task; deep learning approaches in particular are indeed gaining traction for their capability of dealing with chemical structures. A straightforward way to represent such structures is via their molecular graph, which in turn can be naturally processed by graph neural networks. This paper introduces AMCG, a dual atomic-molecular, conditional, latent-space, generative model built around graph processing layers able to support both unconditional and conditional molecular graph generation. Among other features, AMCG is a one-shot model allowing for fast sampling, explicit atomic type histogram assignation and property optimization via gradient ascent. The model was trained on the Quantum Machines 9 (QM9) and ZINC datasets, achieving state-of-the-art performances. Together with classic benchmarks, AMCG was also tested by generating large-scale sampled sets, showing robustness in terms of sustainable throughput of valid, novel and unique molecules.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"44 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The R-mAtrIx Net R-mAtrIx 网络
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-07-03 DOI: 10.1088/2632-2153/ad56f9
Shailesh Lal, Suvajit Majumder and Evgeny Sobko
{"title":"The R-mAtrIx Net","authors":"Shailesh Lal, Suvajit Majumder and Evgeny Sobko","doi":"10.1088/2632-2153/ad56f9","DOIUrl":"https://doi.org/10.1088/2632-2153/ad56f9","url":null,"abstract":"We provide a novel neural network architecture that can: i) output R-matrix for a given quantum integrable spin chain, ii) search for an integrable Hamiltonian and the corresponding R-matrix under assumptions of certain symmetries or other restrictions, iii) explore the space of Hamiltonians around already learned models and reconstruct the family of integrable spin chains which they belong to. The neural network training is done by minimizing loss functions encoding Yang–Baxter equation, regularity and other model-specific restrictions such as hermiticity. Holomorphy is implemented via the choice of activation functions. We demonstrate the work of our neural network on the spin chains of difference form with two-dimensional local space. In particular, we reconstruct the R-matrices for all 14 classes. We also demonstrate its utility as an Explorer, scanning a certain subspace of Hamiltonians and identifying integrable classes after clusterisation. The last strategy can be used in future to carve out the map of integrable spin chains with higher dimensional local space and in more general settings where no analytical methods are available.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"11 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TomOpt: differential optimisation for task- and constraint-aware design of particle detectors in the context of muon tomography TomOpt:以μ介子断层成像为背景,对粒子探测器的任务和约束感知设计进行差分优化
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-07-02 DOI: 10.1088/2632-2153/ad52e7
Giles C Strong, Maxime Lagrange, Aitor Orio, Anna Bordignon, Florian Bury, Tommaso Dorigo, Andrea Giammanco, Mariam Heikal, Jan Kieseler, Max Lamparth, Pablo Martínez Ruíz del Árbol, Federico Nardi, Pietro Vischia and Haitham Zaraket
{"title":"TomOpt: differential optimisation for task- and constraint-aware design of particle detectors in the context of muon tomography","authors":"Giles C Strong, Maxime Lagrange, Aitor Orio, Anna Bordignon, Florian Bury, Tommaso Dorigo, Andrea Giammanco, Mariam Heikal, Jan Kieseler, Max Lamparth, Pablo Martínez Ruíz del Árbol, Federico Nardi, Pietro Vischia and Haitham Zaraket","doi":"10.1088/2632-2153/ad52e7","DOIUrl":"https://doi.org/10.1088/2632-2153/ad52e7","url":null,"abstract":"We describe a software package, TomOpt, developed to optimise the geometrical layout and specifications of detectors designed for tomography by scattering of cosmic-ray muons. The software exploits differentiable programming for the modeling of muon interactions with detectors and scanned volumes, the inference of volume properties, and the optimisation cycle performing the loss minimisation. In doing so, we provide the first demonstration of end-to-end-differentiable and inference-aware optimisation of particle physics instruments. We study the performance of the software on a relevant benchmark scenario and discuss its potential applications. Our code is available on Github (Strong et al 2024 available at: https://github.com/GilesStrong/tomopt).","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"5 3 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed noise and posterior estimation with conditional deepGEM 利用条件 deepGEM 进行混合噪声和后验估计
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-07-01 DOI: 10.1088/2632-2153/ad5926
Paul Hagemann, Johannes Hertrich, Maren Casfor, Sebastian Heidenreich and Gabriele Steidl
{"title":"Mixed noise and posterior estimation with conditional deepGEM","authors":"Paul Hagemann, Johannes Hertrich, Maren Casfor, Sebastian Heidenreich and Gabriele Steidl","doi":"10.1088/2632-2153/ad5926","DOIUrl":"https://doi.org/10.1088/2632-2153/ad5926","url":null,"abstract":"We develop an algorithm for jointly estimating the posterior and the noise parameters in Bayesian inverse problems, which is motivated by indirect measurements and applications from nanometrology with a mixed noise model. We propose to solve the problem by an expectation maximization (EM) algorithm. Based on the current noise parameters, we learn in the E-step a conditional normalizing flow that approximates the posterior. In the M-step, we propose to find the noise parameter updates again by an EM algorithm, which has analytical formulas. We compare the training of the conditional normalizing flow with the forward and reverse Kullback–Leibler divergence, and show that our model is able to incorporate information from many measurements, unlike previous approaches.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"86 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering peptide-protein interactions via composition-based prediction: a case study with survivin/BIRC5 通过基于成分的预测解密肽与蛋白质之间的相互作用:Survivin/BIRC5 案例研究
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-06-27 DOI: 10.1088/2632-2153/ad5784
Atsarina Larasati Anindya, Torbjörn Nur Olsson, Maja Jensen, Maria-Jose Garcia-Bonete, Sally P Wheatley, Maria I Bokarewa, Stefano A Mezzasalma and Gergely Katona
{"title":"Deciphering peptide-protein interactions via composition-based prediction: a case study with survivin/BIRC5","authors":"Atsarina Larasati Anindya, Torbjörn Nur Olsson, Maja Jensen, Maria-Jose Garcia-Bonete, Sally P Wheatley, Maria I Bokarewa, Stefano A Mezzasalma and Gergely Katona","doi":"10.1088/2632-2153/ad5784","DOIUrl":"https://doi.org/10.1088/2632-2153/ad5784","url":null,"abstract":"In the realm of atomic physics and chemistry, composition emerges as the most powerful means of describing matter. Mendeleev’s periodic table and chemical formulas, while not entirely free from ambiguities, provide robust approximations for comprehending the properties of atoms, chemicals, and their collective behaviours, which stem from the dynamic interplay of their constituents. Our study illustrates that protein-protein interactions follow a similar paradigm, wherein the composition of peptides plays a pivotal role in predicting their interactions with the protein survivin, using an elegantly simple model. An analysis of these predictions within the context of the human proteome not only confirms the known cellular locations of survivin and its interaction partners, but also introduces novel insights into biological functionality. It becomes evident that electrostatic- and primary structure-based descriptions fall short in predictive power, leading us to speculate that protein interactions are orchestrated by the collective dynamics of functional groups.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"236 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141519229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlearning regularization for Boltzmann machines 为波尔兹曼机解除学习正则化
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-06-26 DOI: 10.1088/2632-2153/ad5a5f
Enrico Ventura, Simona Cocco, Rémi Monasson and Francesco Zamponi
{"title":"Unlearning regularization for Boltzmann machines","authors":"Enrico Ventura, Simona Cocco, Rémi Monasson and Francesco Zamponi","doi":"10.1088/2632-2153/ad5a5f","DOIUrl":"https://doi.org/10.1088/2632-2153/ad5a5f","url":null,"abstract":"Boltzmann machines (BMs) are graphical models with interconnected binary units, employed for the unsupervised modeling of data distributions. When trained on real data, BMs show the tendency to behave like critical systems, displaying a high susceptibility of the model under a small rescaling of the inferred parameters. This behavior is not convenient for the purpose of generating data, because it slows down the sampling process, and induces the model to overfit the training-data. In this study, we introduce a regularization method for BMs to improve the robustness of the model under rescaling of the parameters. The new technique shares formal similarities with the unlearning algorithm, an iterative procedure used to improve memory associativity in Hopfield-like neural networks. We test our unlearning regularization on synthetic data generated by two simple models, the Curie–Weiss ferromagnetic model and the Sherrington–Kirkpatrick spin glass model. We show that it outperforms Lp-norm schemes and discuss the role of parameter initialization. Eventually, the method is applied to learn the activity of real neuronal cells, confirming its efficacy at shifting the inferred model away from criticality and coming out as a powerful candidate for actual scientific implementations.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"9 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141532643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unification of symmetries inside neural networks: transformer, feedforward and neural ODE 神经网络内部对称性的统一:变压器、前馈和神经 ODE
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-06-26 DOI: 10.1088/2632-2153/ad5927
Koji Hashimoto, Yuji Hirono and Akiyoshi Sannai
{"title":"Unification of symmetries inside neural networks: transformer, feedforward and neural ODE","authors":"Koji Hashimoto, Yuji Hirono and Akiyoshi Sannai","doi":"10.1088/2632-2153/ad5927","DOIUrl":"https://doi.org/10.1088/2632-2153/ad5927","url":null,"abstract":"Understanding the inner workings of neural networks, including transformers, remains one of the most challenging puzzles in machine learning. This study introduces a novel approach by applying the principles of gauge symmetries, a key concept in physics, to neural network architectures. By regarding model functions as physical observables, we find that parametric redundancies of various machine learning models can be interpreted as gauge symmetries. We mathematically formulate the parametric redundancies in neural ODEs, and find that their gauge symmetries are given by spacetime diffeomorphisms, which play a fundamental role in Einstein’s theory of gravity. Viewing neural ODEs as a continuum version of feedforward neural networks, we show that the parametric redundancies in feedforward neural networks are indeed lifted to diffeomorphisms in neural ODEs. We further extend our analysis to transformer models, finding natural correspondences with neural ODEs and their gauge symmetries. The concept of gauge symmetries sheds light on the complex behavior of deep learning models through physics and provides us with a unifying perspective for analyzing various machine learning architectures.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"2016 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance deterioration of deep learning models after clinical deployment: a case study with auto-segmentation for definitive prostate cancer radiotherapy 深度学习模型在临床部署后性能下降:前列腺癌放射治疗自动分割案例研究
IF 6.8 2区 物理与天体物理
Machine Learning Science and Technology Pub Date : 2024-06-24 DOI: 10.1088/2632-2153/ad580f
Biling Wang, Michael Dohopolski, Ti Bai, Junjie Wu, Raquibul Hannan, Neil Desai, Aurelie Garant, Daniel Yang, Dan Nguyen, Mu-Han Lin, Robert Timmerman, Xinlei Wang and Steve B Jiang
{"title":"Performance deterioration of deep learning models after clinical deployment: a case study with auto-segmentation for definitive prostate cancer radiotherapy","authors":"Biling Wang, Michael Dohopolski, Ti Bai, Junjie Wu, Raquibul Hannan, Neil Desai, Aurelie Garant, Daniel Yang, Dan Nguyen, Mu-Han Lin, Robert Timmerman, Xinlei Wang and Steve B Jiang","doi":"10.1088/2632-2153/ad580f","DOIUrl":"https://doi.org/10.1088/2632-2153/ad580f","url":null,"abstract":"Our study aims to explore the long-term performance patterns for deep learning (DL) models deployed in clinic and to investigate their efficacy in relation to evolving clinical practices. We conducted a retrospective study simulating the clinical implementation of our DL model involving 1328 prostate cancer patients treated between January 2006 and August 2022. We trained and validated a U-Net-based auto-segmentation model on data obtained from 2006 to 2011 and tested on data from 2012 to 2022, simulating the model’s clinical deployment starting in 2012. We visualized the trends of the model performance using exponentially weighted moving average (EMA) curves. Additionally, we performed Wilcoxon Rank Sum Test and multiple linear regression to investigate Dice similarity coefficient (DSC) variations across distinct periods and the impact of clinical factors, respectively. Initially, from 2012 to 2014, the model showed high performance in segmenting the prostate, rectum, and bladder. Post-2015, a notable decline in EMA DSC was observed for the prostate and rectum, while bladder contours remained stable. Key factors impacting the prostate contour quality included physician contouring styles, using various hydrogel spacers, CT scan slice thickness, MRI-guided contouring, and intravenous (IV) contrast (p < 0.0001, p < 0.0001, p = 0.0085, p = 0.0012, p < 0.0001, respectively). Rectum contour quality was notably influenced by factors such as slice thickness, physician contouring styles, and the use of various hydrogel spacers. The quality of the bladder contour was primarily affected by IV contrast. The deployed DL model exhibited a substantial decline in performance over time, aligning with the evolving clinical settings.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"159 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信