{"title":"Decision making for transformative change: exploring model use, structural uncertainty and deep leverage points for change in decision making under deep uncertainty","authors":"S. Few, Muriel C. Bonjean Stanton, K. Roelich","doi":"10.3389/fclim.2023.1129378","DOIUrl":"https://doi.org/10.3389/fclim.2023.1129378","url":null,"abstract":"Moving to a low carbon society requires pro-active decisions to transform social and physical systems and their supporting infrastructure. However, the inherent complexity of these systems leads to uncertainty in their responses to interventions, and their critical societal role means that stakes are high. Techniques for decision making under deep uncertainty (DMDU) have recently begun to be applied in the context of transformation to a low carbon society. Applying DMDU to support transformation necessitates careful attention to uncertainty in system relationships (structural uncertainty), and to actions targeting deep leverage points to transform system relationships. This paper presents outcomes of a structured literature review of 44 case studies in which DMDU is applied to infrastructure decisions. Around half of these studies are found to neglect structural uncertainty entirely, and no study explicitly considers alternative system conceptions. Three quarters of studies consider actions targeting only parameters, a shallow leverage point for system transformation. Where actions targeting deeper leverage points are included, models of system relationships are unable to represent the transformative change these interventions could effect. The lack of attention to structural uncertainty in these studies could lead to misleading results in complex and poorly understood systems. The lack of interventions targeting deep leverage points could lead to neglect of some of the most effective routes to achieving transformative change. This review recommends greater attention to deeper leverage points and structural uncertainty in applications of DMDU targeting transformative change.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44915566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: New challenges and future perspectives in climate adaptation: 2022","authors":"Ayyoob Sharifi","doi":"10.3389/fclim.2023.1213587","DOIUrl":"https://doi.org/10.3389/fclim.2023.1213587","url":null,"abstract":"Africa’s","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47820055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Murugan, A. Kuruvila, A. Anandhi, A. Pooja, K. Ashokkumar, M. K. Dhanya, A. Subbiah, M. Alagupalamuthirsolai, N. Sritharan
{"title":"Cardamom agro-environmental interrelationships analysis in Indian cardamom hills","authors":"M. Murugan, A. Kuruvila, A. Anandhi, A. Pooja, K. Ashokkumar, M. K. Dhanya, A. Subbiah, M. Alagupalamuthirsolai, N. Sritharan","doi":"10.3389/fclim.2023.1107804","DOIUrl":"https://doi.org/10.3389/fclim.2023.1107804","url":null,"abstract":"The rainfall pattern seen in the Indian Cardamom Hills (ICH) has been extremely variable and complicated, with El Niño-Southern Oscillation (ENSO) playing a crucial role in shaping this pattern. In light of this, more investigation is required through improved statistical analysis. During the study period, there was greater variability in rainfall and the frequency of rainy days. About 2,730 mm of rainfall was reported in 2018, while the lowest amount (1168.3 mm) was registered for 2016. The largest decrease in decadal rainfall (>65 mm) was given by the decade 1960–1969, followed by 1980–1989 (>40 mm) and 2010–2019 (>10 mm). In the last 60 years of study, there has been a reduction of rainy days by 5 days in the last decade (2000–2009), but in the following decade (2010–2019), it registered an increasing trend, which is only slightly <2 days. The highest increase in decadal rainy days was observed for the 1970–1979 period. The smallest decadal increase was reported for the last decade (2010–2019). Total sunshine hours were the highest (1527.47) for the lowest rainfall year of 2016, while the lowest value (1,279) was recorded for the highest rainfall year (2021). The rainfall characteristics of ICH are highly influenced by the global ENSO phenomenon, both positively and negatively, depending on the global El Nino and La Nina conditions. Correspondingly, below and above-average rainfall was recorded consecutively for 1963–1973, 2003–2016, and 1970–2002. Higher bright forenoon sun hours occurred only during SWM months, which also reported maximum disease intensity on cardamom. The year 2016 was regarded as a poorly distributed year, with the lowest rainfall and the highest bright afternoon sun hours during the winter and summer months (January-May). Over the last three decades, the production and productivity of cardamom have shown a steady increase along with the ongoing local climatic change. Many of our statistical tests resulted in important information in support of temporal climatic change and variability. Maintaining shade levels is essential to address the adverse effects of increasing surface air temperature coupled with the downward trend of the number of rainy days and elevated soil temperature levels.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45955607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Petutschnig, Erich Rome, Daniel Lückerath, Katharina Milde, Åsa Gerger Swartling, C. Aall, M. Meyer, G. Jordà, J. Gobert, Mathilda Englund, Karin André, Muriel Bour, Emmanuel M. N. A. N. Attoh, B. Dale, K. Renner, Adeline Cauchy, Saskia Reuschel, Florence Rudolf, M. Agulles, C. Melo-Aguilar, M. Zebisch, S. Kienberger
{"title":"Research advancements for impact chain based climate risk and vulnerability assessments","authors":"L. Petutschnig, Erich Rome, Daniel Lückerath, Katharina Milde, Åsa Gerger Swartling, C. Aall, M. Meyer, G. Jordà, J. Gobert, Mathilda Englund, Karin André, Muriel Bour, Emmanuel M. N. A. N. Attoh, B. Dale, K. Renner, Adeline Cauchy, Saskia Reuschel, Florence Rudolf, M. Agulles, C. Melo-Aguilar, M. Zebisch, S. Kienberger","doi":"10.3389/fclim.2023.1095631","DOIUrl":"https://doi.org/10.3389/fclim.2023.1095631","url":null,"abstract":"As the climate crisis continues to worsen, there is an increasing demand for scientific evidence from Climate Risk and Vulnerability Assessments (CRVA). We present 12 methodological advancements to the Impact Chain-based CRVA (IC-based CRVA) framework, which combines participatory and data-driven approaches to identify and measure climate risks in complex socio-ecological systems. The advancements improve the framework along five axes, including the existing workflow, stakeholder engagement, uncertainty management, socio-economic scenario modeling, and transboundary climate risk examination. Eleven case studies were conducted and evaluated to produce these advancements. Our paper addresses two key research questions: (a) How can the IC-based CRVA framework be methodologically advanced to produce more accurate and insightful results? and (b) How effectively can the framework be applied in research and policy domains that it was not initially designed for? We propose methodological advancements to capture dynamics between risk factors, to resolve contradictory worldviews, and to maintain consistency between Impact Chains across policy scales. We suggest using scenario-planning techniques and integrating uncertainties via Probability Density Functions and Reverse Geometric Aggregation. Our research examines the applicability of IC-based CRVAs to address transboundary climate risks and integrating macro-economic models to reflect possible future socio-economic exposure. Our findings demonstrate that the modular structure of IC-based CRVA allows for the integration of various methodological advancements, and further advancements are possible to better assess complex climate risks and improve adaptation decision-making.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47031815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the relationship between droughts and rural-to-urban mobility—a mixed methods approach for Pune, India","authors":"Raphael Karutz, S. Kabisch","doi":"10.3389/fclim.2023.1168584","DOIUrl":"https://doi.org/10.3389/fclim.2023.1168584","url":null,"abstract":"Urbanization in the global South is intricately linked with the internal mobility of people and the impacts of climate change. In India, changing precipitation patterns pose pressure on rural livelihoods through the increasing frequency and severity of droughts, contributing to rural-to-urban mobility. At destination, however, insufficient information is available on the complex mobility backgrounds of the new arrivals. We employ a mixed methods approach to investigate mobility patterns to Pune, India, with a special focus on the role of droughts. Combining a household survey with in-depth interviews and monthly precipitation data on district level, we use descriptive statistics and qualitative content analysis to show a significant relationship between drought at origin and mobility to Pune. Particularly affected are recent arrivals, migrants of rural origin and from other states, and those currently living in informal areas. The link between droughts and mobility decisions is usually indirect, hidden behind economic conditions such as the loss of agricultural jobs. Paradoxically, migrants affected by droughts at origin face increased flood risk at destination. This risk, however, is often consciously taken in favor of better livelihood opportunities in the city. With climate scenarios projecting increasingly variable precipitation patterns, understanding the climate-mobility-urbanization nexus gains importance, especially for destination hotspots like the city of Pune.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43594649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perspectives on climate information use in the Caribbean","authors":"D. Dookie, D. Conway, S. Dessai","doi":"10.3389/fclim.2023.1022721","DOIUrl":"https://doi.org/10.3389/fclim.2023.1022721","url":null,"abstract":"Within research on climate information for decision-making, localized insights on the influences of climate information use remain limited in small and low-income countries. This paper offers an empirical contribution on Caribbean perspectives of climate information use considering current barriers and enablers in the region. We employ thematic analysis of 26 semi-structured interviews with region-focused sectoral experts (including end-users and decision-makers) drawn from climate adaptation, disaster risk reduction, and resilience focused initiatives and institutions. The results reaffirm presence of known barriers, such as the crucial role of finance, but notably we identify a range of interlinked enabling and catalyzing conditions necessary for the effective use of climate information. These conditions include the need for island- and sector- contextualized climate information, the role of international donors, the importance of adequate human resource capacity and presence of loud voices/climate champions, as well as the need for effective political and legislative mandates and for greater co-production. We construct a visualization of respondents' understanding of influencing factor interrelationships. This shows how their heuristics of climate information use for decision-making intricately link with roles for proactive climate champions, and that available finance often reflects donor interests. We end by discussing how these insights can contribute to strategies for more effective climate information use to promote resilience within the region.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45352887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naomi Cohen-Shields, Tianyi Sun, S. Hamburg, I. Ocko
{"title":"Distortion of sectoral roles in climate change threatens climate goals","authors":"Naomi Cohen-Shields, Tianyi Sun, S. Hamburg, I. Ocko","doi":"10.3389/fclim.2023.1163557","DOIUrl":"https://doi.org/10.3389/fclim.2023.1163557","url":null,"abstract":"The longstanding method for reporting greenhouse gas emissions—carbon dioxide equivalence (CO2e)—systematically underestimates methane-dominated economic sectors' contributions to warming in the coming decades. This is because it only calculates the warming impact of a pulse of emissions over a 100-year period. For short-lived climate forcers that mostly influence the climate for a decade or two, like methane, this method masks their near-term potency. Assessing the impacts of future greenhouse gas emissions using a simple climate model reveals that midcentury warming contributions of sectors dominated by methane—agriculture, fossil fuel production and distribution, and waste—are two times higher than estimated using CO2e. The CO2e method underemphasizes the importance of reducing emissions from these sectors, and risks misaligning emissions targets with desired temperature outcomes. It is essential to supplement CO2e-derived insights with approaches that convey climate impacts of ongoing emissions over multiple timescales, and to never rely exclusively on CO2e.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44908975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Storing carbon dioxide for climate's sake: contradictions and parallels with enhanced oil recovery","authors":"Emily Rodriguez","doi":"10.3389/fclim.2023.1166011","DOIUrl":"https://doi.org/10.3389/fclim.2023.1166011","url":null,"abstract":"An increase in carbon capture and storage (CCS) projects, including bioenergy with CCS (BECCS), has led to an urgent demand for storage sites, and Norway stands out for its ongoing and planned geological storage sites in a European context. Even though there are no commercial carbon dioxide enhanced oil recovery (CO2-EOR) projects in Norway and the North Sea, there is scientific literature linking CO2-EOR and CCS in this geographical region. CO2-EOR utilizes CO2 to extract additional oil, counteracting the climate change mitigation purpose of geological storage. This review article explores how CCS is represented in the scientific literature on CO2-EOR in the North Sea and Norway, with a focus on system synergies and contradictions in relation to climate change mitigation. The main themes in the scientific literature on CO2-EOR in the North Sea are climate change, economics, and geological feasibility. Monitoring, safety, and leakage in addition to transportation of CO2 are less salient. The results show that there are contrasting framings in the literature. One framing is that CO2-EOR is a gateway to large-scale storage which maintains, or even expands, the extraction of fossil fuels and contributes to a sustainable transition in the long run through knowledge building and shared infrastructure. In contrast, another framing is that CO2-EOR combined with CCS have goal conflicts and are therefore not compatible, illustrating complexities with geological storage. Finally, this study reflects on how techno-economic research on CO2 storage in the North Sea and Norway is furthered through critical social science perspectives.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43786796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}