Precision Clinical Medicine最新文献

筛选
英文 中文
AI based colorectal disease detection using real-time screening colonoscopy 基于人工智能的结直肠疾病实时筛查结肠镜检查
IF 5.3 4区 医学
Precision Clinical Medicine Pub Date : 2021-05-20 DOI: 10.1093/pcmedi/pbab013
Jia-Ling Jiang, Qianrong Xie, Zhuo Cheng, Jianqiang Cai, Tian Xia, Hang Yang, Bo Yang, Hui-min Peng, Xue-song Bai, Mingque Yan, Xue Li, Jun Zhou, Xuan Huang, Liang Wang, Haiyan Long, Pingxi Wang, Yanpeng Chu, Fanwei Zeng, Xiu-wei Zhang, Guangyu Wang, Fanxin Zeng
{"title":"AI based colorectal disease detection using real-time screening colonoscopy","authors":"Jia-Ling Jiang, Qianrong Xie, Zhuo Cheng, Jianqiang Cai, Tian Xia, Hang Yang, Bo Yang, Hui-min Peng, Xue-song Bai, Mingque Yan, Xue Li, Jun Zhou, Xuan Huang, Liang Wang, Haiyan Long, Pingxi Wang, Yanpeng Chu, Fanwei Zeng, Xiu-wei Zhang, Guangyu Wang, Fanxin Zeng","doi":"10.1093/pcmedi/pbab013","DOIUrl":"https://doi.org/10.1093/pcmedi/pbab013","url":null,"abstract":"Abstract Colonoscopy is an effective tool for early screening of colorectal diseases. However, the application of colonoscopy in distinguishing different intestinal diseases still faces great challenges of efficiency and accuracy. Here we constructed and evaluated a deep convolution neural network (CNN) model based on 117 055 images from 16 004 individuals, which achieved a high accuracy of 0.933 in the validation dataset in identifying patients with polyp, colitis, colorectal cancer (CRC) from normal. The proposed approach was further validated on multi-center real-time colonoscopy videos and images, which achieved accurate diagnostic performance on detecting colorectal diseases with high accuracy and precision to generalize across external validation datasets. The diagnostic performance of the model was further compared to the skilled endoscopists and the novices. In addition, our model has potential in diagnosis of adenomatous polyp and hyperplastic polyp with an area under the receiver operating characteristic curve of 0.975. Our proposed CNN models have potential in assisting clinicians in making clinical decisions with efficiency during application.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75287183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Spaceflight decelerates the epigenetic clock orchestrated with a global alteration in DNA methylome and transcriptome in the mouse retina. 太空飞行减缓了小鼠视网膜中与DNA甲基组和转录组整体改变相协调的表观遗传时钟。
IF 5.3 4区 医学
Precision Clinical Medicine Pub Date : 2021-05-17 eCollection Date: 2021-06-01 DOI: 10.1093/pcmedi/pbab012
Zhong Chen, Seta Stanbouly, Nina C Nishiyama, Xin Chen, Michael D Delp, Hongyu Qiu, Xiao W Mao, Charles Wang
{"title":"Spaceflight decelerates the epigenetic clock orchestrated with a global alteration in DNA methylome and transcriptome in the mouse retina.","authors":"Zhong Chen,&nbsp;Seta Stanbouly,&nbsp;Nina C Nishiyama,&nbsp;Xin Chen,&nbsp;Michael D Delp,&nbsp;Hongyu Qiu,&nbsp;Xiao W Mao,&nbsp;Charles Wang","doi":"10.1093/pcmedi/pbab012","DOIUrl":"https://doi.org/10.1093/pcmedi/pbab012","url":null,"abstract":"<p><p>Astronauts exhibit an assortment of clinical abnormalities in their eyes during long-duration spaceflight. The purpose of this study was to determine whether spaceflight induces epigenomic and transcriptomic reprogramming in the retina or alters the epigenetic clock. The mice were flown for 37 days in animal enclosure modules on the International Space Station; ground-based control animals were maintained under similar housing conditions. Mouse retinas were isolated and both DNA methylome and transcriptome were determined by deep sequencing. We found that a large number of genes were differentially methylated with spaceflight, whereas there were fewer differentially expressed genes at the transcriptome level. Several biological pathways involved in retinal diseases such as macular degeneration were significantly altered. Our results indicated that spaceflight decelerated the retinal epigenetic clock. This study demonstrates that spaceflight impacts the retina at the epigenomic and transcriptomic levels, and such changes could be involved in the etiology of eye-related disorders among astronauts.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/pcmedi/pbab012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39115369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Combining quantitative and qualitative magnetic resonance imaging features to differentiate anorectal malignant melanoma from low rectal cancer. 结合定量和定性磁共振成像特征,区分肛门直肠恶性黑色素瘤和低位直肠癌。
IF 5.1 4区 医学
Precision Clinical Medicine Pub Date : 2021-04-30 eCollection Date: 2021-06-01 DOI: 10.1093/pcmedi/pbab011
Zeyan Xu, Ke Zhao, Lujun Han, Pinxiong Li, Zhenwei Shi, Xiaomei Huang, Chu Han, Huihui Wang, Minglei Chen, Chen Liu, Yanting Liang, Suyun Li, Yanqi Huang, Xin Chen, Changhong Liang, Wuteng Cao, Zaiyi Liu
{"title":"Combining quantitative and qualitative magnetic resonance imaging features to differentiate anorectal malignant melanoma from low rectal cancer.","authors":"Zeyan Xu, Ke Zhao, Lujun Han, Pinxiong Li, Zhenwei Shi, Xiaomei Huang, Chu Han, Huihui Wang, Minglei Chen, Chen Liu, Yanting Liang, Suyun Li, Yanqi Huang, Xin Chen, Changhong Liang, Wuteng Cao, Zaiyi Liu","doi":"10.1093/pcmedi/pbab011","DOIUrl":"10.1093/pcmedi/pbab011","url":null,"abstract":"<p><strong>Background: </strong>Distinguishing anorectal malignant melanoma from low rectal cancer remains challenging because of the overlap of clinical symptoms and imaging findings. We aim to investigate whether combining quantitative and qualitative magnetic resonance imaging (MRI) features could differentiate anorectal malignant melanoma from low rectal cancer.</p><p><strong>Methods: </strong>Thirty-seven anorectal malignant melanoma and 98 low rectal cancer patients who underwent pre-operative rectal MRI from three hospitals were retrospectively enrolled. All patients were divided into the primary cohort (N = 84) and validation cohort (N = 51). Quantitative image analysis was performed on T1-weighted (T1WI), T2-weighted (T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI). The subjective qualitative MRI findings were evaluated by two radiologists in consensus. Multivariable analysis was performed using stepwise logistic regression. The discrimination performance was assessed by the area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI).</p><p><strong>Results: </strong>The skewness derived from T2WI (T2WI-skewness) showed the best discrimination performance among the entire quantitative image features for differentiating anorectal malignant melanoma from low rectal cancer (primary cohort: AUC = 0.852, 95% CI 0.788-0.916; validation cohort: 0.730, 0.645-0.815). Multivariable analysis indicated that T2WI-skewness and the signal intensity of T1WI were independent factors, and incorporating both factors achieved good discrimination performance in two cohorts (primary cohort: AUC = 0.913, 95% CI 0.868-0.958; validation cohort: 0.902, 0.844-0.960).</p><p><strong>Conclusions: </strong>Incorporating T2WI-skewness and the signal intensity of T1WI achieved good performance for differentiating anorectal malignant melanoma from low rectal cancer. The quantitative image analysis helps improve diagnostic accuracy.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73737133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EyeHealer: A large-scale anterior eye segment dataset with eye structure and lesion annotations EyeHealer:一个具有眼睛结构和病变注释的大规模眼前段数据集
IF 5.3 4区 医学
Precision Clinical Medicine Pub Date : 2021-04-27 DOI: 10.1093/pcmedi/pbab009
Wenjia Cai, Jie Xu, Ke Wang, Xiaohong Liu, Wenqin Xu, Huimin Cai, Yuanxu Gao, Yuandong Su, Meixia Zhang, Jie Zhu, Charlotte L. Zhang, Edward Zhang, Fangfei Wang, Yun Yin, I. Lai, Guangyu Wang, Kang Zhang, Yingfeng Zheng
{"title":"EyeHealer: A large-scale anterior eye segment dataset with eye structure and lesion annotations","authors":"Wenjia Cai, Jie Xu, Ke Wang, Xiaohong Liu, Wenqin Xu, Huimin Cai, Yuanxu Gao, Yuandong Su, Meixia Zhang, Jie Zhu, Charlotte L. Zhang, Edward Zhang, Fangfei Wang, Yun Yin, I. Lai, Guangyu Wang, Kang Zhang, Yingfeng Zheng","doi":"10.1093/pcmedi/pbab009","DOIUrl":"https://doi.org/10.1093/pcmedi/pbab009","url":null,"abstract":"ABSTRACT Anterior segment eye diseases account for a significant proportion of presentations to eye clinics worldwide, including diseases associated with corneal pathologies, anterior chamber abnormalities (e.g. blood or inflammation), and lens diseases. The construction of an automatic tool for segmentation of anterior segment eye lesions would greatly improve the efficiency of clinical care. With research on artificial intelligence progressing in recent years, deep learning models have shown their superiority in image classification and segmentation. The training and evaluation of deep learning models should be based on a large amount of data annotated with expertise; however, such data are relatively scarce in the domain of medicine. Herein, the authors developed a new medical image annotation system, called EyeHealer. It is a large-scale anterior eye segment dataset with both eye structures and lesions annotated at the pixel level. Comprehensive experiments were conducted to verify its performance in disease classification and eye lesion segmentation. The results showed that semantic segmentation models outperformed medical segmentation models. This paper describes the establishment of the system for automated classification and segmentation tasks. The dataset will be made publicly available to encourage future research in this area.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82508690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
The mechanism by which noncoding RNAs regulate muscle wasting in cancer cachexia. 非编码rna调控癌症恶病质中肌肉萎缩的机制。
IF 5.3 4区 医学
Precision Clinical Medicine Pub Date : 2021-04-23 DOI: 10.1093/PCMEDI/PBAB008
Xueer Zhou, Shoushan Hu, Yunan Zhang, Guan-Tao Du, Yi Li
{"title":"The mechanism by which noncoding RNAs regulate muscle wasting in cancer cachexia.","authors":"Xueer Zhou, Shoushan Hu, Yunan Zhang, Guan-Tao Du, Yi Li","doi":"10.1093/PCMEDI/PBAB008","DOIUrl":"https://doi.org/10.1093/PCMEDI/PBAB008","url":null,"abstract":"Cancer cachexia (CC) is a complex metabolic syndrome that accelerates muscle wasting and affects up to 80% of patients with cancer; however, timely diagnostic methods and effective cures are lacking. Although a considerable number of studies have focused on the mechanism of CC-induced muscle atrophy, few novel therapies have been applied in the last decade. In recent years, noncoding RNAs (ncRNAs) have attracted great attention as many differentially expressed ncRNAs in cancer cachectic muscles have been reported to participate in the inhibition of myogenesis and activation of proteolysis. In addition, extracellular vesicles (EVs), which function as ncRNA carriers in intercellular communication, are closely involved in changing ncRNA expression profiles in muscle and promoting the development of muscle wasting; thus, EV-related ncRNAs may represent potential therapeutic targets. This review comprehensively describes the process of ncRNA transmission through EVs and summarizes the pathways and targets of ncRNAs that lead to CC-induced muscle atrophy.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86976780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The fourth scientific discovery paradigm for precision medicine and healthcare: Challenges ahead 精准医学和医疗保健的第四种科学发现范式:未来的挑战
IF 5.3 4区 医学
Precision Clinical Medicine Pub Date : 2021-04-16 DOI: 10.1093/pcmedi/pbab007
Li Shen, Jinwei Bai, Jiao Wang, Bairong Shen
{"title":"The fourth scientific discovery paradigm for precision medicine and healthcare: Challenges ahead","authors":"Li Shen, Jinwei Bai, Jiao Wang, Bairong Shen","doi":"10.1093/pcmedi/pbab007","DOIUrl":"https://doi.org/10.1093/pcmedi/pbab007","url":null,"abstract":"Abstract With the progression of modern information techniques, such as next generation sequencing (NGS), Internet of Everything (IoE) based smart sensors, and artificial intelligence algorithms, data-intensive research and applications are emerging as the fourth paradigm for scientific discovery. However, we face many challenges to practical application of this paradigm. In this article, 10 challenges to data-intensive discovery and applications in precision medicine and healthcare are summarized and the future perspectives on next generation medicine are discussed.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89850637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
EnhFFL: A database of enhancer mediated feed-forward loops for human and mouse EnhFFL:人类和小鼠增强子介导的前馈回路数据库
IF 5.3 4区 医学
Precision Clinical Medicine Pub Date : 2021-04-14 DOI: 10.1093/pcmedi/pbab006
Ran Kang, Zhengtang Tan, Mei Lang, Linqi Jin, Yin Zhang, Yiming Zhang, T. Guo, Zhiyun Guo
{"title":"EnhFFL: A database of enhancer mediated feed-forward loops for human and mouse","authors":"Ran Kang, Zhengtang Tan, Mei Lang, Linqi Jin, Yin Zhang, Yiming Zhang, T. Guo, Zhiyun Guo","doi":"10.1093/pcmedi/pbab006","DOIUrl":"https://doi.org/10.1093/pcmedi/pbab006","url":null,"abstract":"Abstract Feed-forward loops (FFLs) are thought to be one of the most common and important classes of transcriptional network motifs involved in various diseases. Enhancers are cis-regulatory elements that positively regulate protein-coding genes or microRNAs (miRNAs) by recruiting DNA-binding transcription factors (TFs). However, a comprehensive resource to identify, store, and analyze the FFLs of typical enhancer and super-enhancer FFLs is not currently available. Here, we present EnhFFL, an online database to provide a data resource for users to browse and search typical enhancer and super-enhancer FFLs. The current database covers 46 280/7000 TF-enhancer-miRNA FFLs, 9997/236 enhancer-miRNA-gene FFLs, 3 561 164/3 193 182 TF-enhancer-gene FFLs, and 1259/235 TF-enhancer feed-back loops (FBLs) across 91 tissues/cell lines of human and mouse, respectively. Users can browse loops by selecting species, types of tissue/cell line, and types of FFLs. EnhFFL supports searching elements including name/ID, genomic location, and the conservation of miRNA target genes. We also developed tools for users to screen customized FFLs using the threshold of q value as well as the confidence score of miRNA target genes. Disease and functional enrichment analysis showed that master miRNAs that are widely engaged in FFLs including TF-enhancer-miRNAs and enhancer-miRNA-genes are significantly involved in tumorigenesis. Database URL:http://lcbb.swjtu.edu.cn/EnhFFL/.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83958699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Blood purification for sepsis: an overview 脓毒症的血液净化:综述
IF 5.3 4区 医学
Precision Clinical Medicine Pub Date : 2021-02-25 DOI: 10.1093/pcmedi/pbab005
Ling Zhang, Yuying Feng, P. Fu
{"title":"Blood purification for sepsis: an overview","authors":"Ling Zhang, Yuying Feng, P. Fu","doi":"10.1093/pcmedi/pbab005","DOIUrl":"https://doi.org/10.1093/pcmedi/pbab005","url":null,"abstract":"Abstract Sepsis is a life-threatening organ failure exacerbated by a maladaptive infection response from the host, and is one of the major causes of mortality in the intensive care unit. In recent decades, several extracorporeal blood purification techniques have been developed to manage sepsis by acting on both the infectious agents themselves and the host immune response. This research aims to summarize recent progress on extracorporeal blood purification technologies applied for sepsis, discuss unanswered questions on renal replacement therapy for septic patients, and present a decision-making strategy for practitioners.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77924168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Checkpoint immunotherapy for NK/T cell lymphoma—Time for a showdown? NK/T细胞淋巴瘤的检查点免疫疗法:是时候摊牌了?
IF 5.3 4区 医学
Precision Clinical Medicine Pub Date : 2021-01-30 DOI: 10.1093/pcmedi/pbab004
J. Chan, J. Lim, C. Ong
{"title":"Checkpoint immunotherapy for NK/T cell lymphoma—Time for a showdown?","authors":"J. Chan, J. Lim, C. Ong","doi":"10.1093/pcmedi/pbab004","DOIUrl":"https://doi.org/10.1093/pcmedi/pbab004","url":null,"abstract":"Editor's note A commentary on “Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma”.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88326614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neuroendocrine cells of the prostate: Histology, biological functions, and molecular mechanisms. 前列腺神经内分泌细胞:组织学、生物学功能和分子机制。
IF 5.3 4区 医学
Precision Clinical Medicine Pub Date : 2021-01-28 eCollection Date: 2021-03-01 DOI: 10.1093/pcmedi/pbab003
William Butler, Jiaoti Huang
{"title":"Neuroendocrine cells of the prostate: Histology, biological functions, and molecular mechanisms.","authors":"William Butler,&nbsp;Jiaoti Huang","doi":"10.1093/pcmedi/pbab003","DOIUrl":"https://doi.org/10.1093/pcmedi/pbab003","url":null,"abstract":"<p><p>Prostate cancer (PCa) is a common cause of cancer-related mortality in men worldwide. Although most men are diagnosed with low grade, indolent tumors that are potentially curable, a significant subset develops advanced disease where hormone therapy is required to target the androgen receptor (AR). Despite its initial effect, hormone therapy eventually fails and the tumor progresses to lethal stages even through continued inhibition of AR. This review article focuses on the role of PCa cellular heterogeneity in therapy resistance and disease progression. Although AR-positive luminal-type cells represent the vast majority of PCa cells, there exists a minor component of AR-negative neuroendocrine (NE) cells that are resistant to hormonal therapy and are enriched by the treatment. In addition, it is now well accepted that a significant subset of hormonally treated tumors recur as small cell neuroendocrine carcinoma (SCNC), further highlighting the importance of targeting NE cells in addition to the more abundant luminal-type cancer cells. Although it has been long recognized that NE cells are present in PCa, their underlying function in benign prostate and molecular mechanisms contributing to PCa progression remains poorly understood. In this article, we review the morphology and function of NE cells in benign prostate and PCa as well as underlying molecular mechanisms. In addition, we review the major reported mechanisms for transformation from common adenocarcinoma histology to the highly lethal SCNC, a significant clinical challenge in the management of advanced PCa.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/pcmedi/pbab003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25580368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信