Winston Wang, Charlotte L Zhang, K. Wei, Ye Sang, Jun Shen, Guangyu Wang, Alexander X. Lozano
{"title":"Clinical longitudinal evaluation of COVID-19 patients and prediction of organ-specific recovery using artificial intelligence","authors":"Winston Wang, Charlotte L Zhang, K. Wei, Ye Sang, Jun Shen, Guangyu Wang, Alexander X. Lozano","doi":"10.1093/pcmedi/pbaa040","DOIUrl":null,"url":null,"abstract":"Abstract Within COVID-19 there is an urgent unmet need to predict at the time of hospital admission which COVID-19 patients will recover from the disease, and how fast they recover to deliver personalized treatments and to properly allocate hospital resources so that healthcare systems do not become overwhelmed. To this end, we have combined clinically salient CT imaging data synergistically with laboratory testing data in an integrative machine learning model to predict organ-specific recovery of patients from COVID-19. We trained and validated our model in 285 patients on each separate major organ system impacted by COVID-19 including the renal, pulmonary, immune, cardiac, and hepatic systems. To greatly enhance the speed and utility of our model, we applied an artificial intelligence method to segment and classify regions on CT imaging, from which interpretable data could be directly fed into the predictive machine learning model for overall recovery. Across all organ systems we achieved validation set area under the receiver operator characteristic curve (AUC) values for organ-specific recovery ranging from 0.80 to 0.89, and significant overall recovery prediction in Kaplan-Meier analyses. This demonstrates that the synergistic use of an artificial intelligence (AI) framework applied to CT lung imaging and a machine learning model that integrates laboratory test data with imaging data can accurately predict the overall recovery of COVID-19 patients from baseline characteristics.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"3 1","pages":"62 - 69"},"PeriodicalIF":5.1000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbaa040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Within COVID-19 there is an urgent unmet need to predict at the time of hospital admission which COVID-19 patients will recover from the disease, and how fast they recover to deliver personalized treatments and to properly allocate hospital resources so that healthcare systems do not become overwhelmed. To this end, we have combined clinically salient CT imaging data synergistically with laboratory testing data in an integrative machine learning model to predict organ-specific recovery of patients from COVID-19. We trained and validated our model in 285 patients on each separate major organ system impacted by COVID-19 including the renal, pulmonary, immune, cardiac, and hepatic systems. To greatly enhance the speed and utility of our model, we applied an artificial intelligence method to segment and classify regions on CT imaging, from which interpretable data could be directly fed into the predictive machine learning model for overall recovery. Across all organ systems we achieved validation set area under the receiver operator characteristic curve (AUC) values for organ-specific recovery ranging from 0.80 to 0.89, and significant overall recovery prediction in Kaplan-Meier analyses. This demonstrates that the synergistic use of an artificial intelligence (AI) framework applied to CT lung imaging and a machine learning model that integrates laboratory test data with imaging data can accurately predict the overall recovery of COVID-19 patients from baseline characteristics.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.