{"title":"Research on modulation recognition method of electromagnetic signal based on wavelet transform convolutional neural network","authors":"Wanfang Gao","doi":"10.21595/mme.2023.23746","DOIUrl":"https://doi.org/10.21595/mme.2023.23746","url":null,"abstract":"The method of electromagnetic signal modulation recognition based on wavelet transform convolutional neural network is studied to improve the effect of electromagnetic signal modulation recognition. By analyzing the electromagnetic signal modulation model, the original electromagnetic signal is preprocessed by wavelet transform to remove the noise of the original electromagnetic signal. The processed electromagnetic signal is used as the input of convolutional neural network, and the electromagnetic signal feature vector is extracted through the convolution layer of convolutional neural network. By using full connection operation, the advanced feature vector of electromagnetic signal is integrated, and the electromagnetic signal is classified by softmax function, and the electromagnetic signal modulation recognition result is output, thus realizing the electromagnetic signal modulation recognition. The experimental results show that when the number of layers of wavelet decomposition is 7 and the wavelet function is Db9, the wavelet transform has the best denoising effect on electromagnetic signal data. At the same time, the network training efficiency of this method is high, and the accuracy of electromagnetic signal modulation recognition is as high as 97.2 %, which improves the effect of electromagnetic signal modulation recognition and is suitable for various types of electromagnetic signal modulation recognition.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":"28 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Murali, G. Deepa, Nirmala Kasturi V, T. Poornakantha
{"title":"Joint effects of thermal diffusion and diffusion thermo on MHD three dimensional nanofluid flow towards a stretching sheet","authors":"G. Murali, G. Deepa, Nirmala Kasturi V, T. Poornakantha","doi":"10.21595/mme.2023.23590","DOIUrl":"https://doi.org/10.21595/mme.2023.23590","url":null,"abstract":"This communication reports the joint effects of Thermal Diffusion and Diffusion Thermo on viscous and incompressible three-dimensional nanofluid flow towards a stretching sheet in connection to the influence of a magnetic field. In this study, nanofluid model is employed for the effects of thermophoresis and Brownian motion. Following that, similarity variables are chosen to turn the dimensional nonlinear system into dimensionless expressions and the resultant transformed equations are solved numerically using Finite Element method. Special emphasis has been given to the parameters of physical interest. These findings are visually presented through graphical representations, providing a clear and insightful understanding involved in this flow scenario. In addition, the final results are examined in light of past research and it is determined that they meet the convergence standards to an exceedingly satisfactory degree. The study’s findings are beneficial for many technical and commercial endeavours.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139138437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A third-order shear deformation plate bending formulation for thick plates: first principles derivation and applications","authors":"Charles Chinwuba Ike","doi":"10.21595/mme.2023.23688","DOIUrl":"https://doi.org/10.21595/mme.2023.23688","url":null,"abstract":"A third-order shear deformation plate bending formulation is presented in this study from the first principles. The derivation assumed a displacement field constructed using third-order polynomial function of the transverse (z) coordinate; and made to apriori satisfy the linear three-dimensional (3D) kinematics relations as well as the transverse shear stress free boundary conditions at the top and bottom plate surfaces. The formulation thus has no need for shear stress correction factors of the first-order shear deformation plate theories. The domain equations of equilibrium are obtained as a set of three coupled differential equations in terms of three unknown displacements. The system of coupled equations is solved for simply supported rectangular and square plates subjected to four cases of loading distributions: sinusoidal loading, uniformly distributed loading, linearly distributed loading and point load at the plate center. Navier’s double trigonometric series method is used to construct trial solutions for the three displacement functions such that the boundary conditions are satisfied identically. The integration problem is thus reduced to an algebraic problem and is solved for each considered loading. It is found that the present formulation gives exact results for the normal stresses σxx for sinusoidal and uniformly distributed loads. The study further showed that the results for deflection and stresses agreed with Krishna Murty’s higher order shear deformation plate theory results. The present formulation gave accurate results because of the inclusion of transverse normal strain effects in the formulation. The formulation gives a quadratic variation of the transverse shear stresses across the thickness in consonance with the theory of elasticity method.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" 45","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139141635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A mathematical model and microcontroller-based method for measuring dielectric permittivity and discharge characteristics with Arduino ATmega 328: a case study in a physics laboratory","authors":"Valentinus Galih, Vidia Putra, Ngadiyono","doi":"10.21595/mme.2023.23695","DOIUrl":"https://doi.org/10.21595/mme.2023.23695","url":null,"abstract":"A microcontroller-based measuring instrument and a new mathematical model are used to investigate capacitor permittivity and dielectric materials' charge-discharge characteristics. In this study, a prototype capacitive permittivity measurement apparatus for dielectric materials was carefully developed using an Arduino microcontroller, a resistor, and a capacitor. The experimental setup comprises a capacitor-resistor circuit, wherein a 5-volt power supply sourced from the microcontroller interfaces with a computer. During the charging process, a comprehensive evaluation of model-data alignment was performed, yielding values of 0.54252156, 0.9951, and 111.2508701 for the sum of squares error (SSE), the coefficient of determination (R-squared), and the sum of squares total (SST), respectively. Similarly, the analysis extended to the discharging process, unveiling values of 5.10174756, 0.962805684, and 137.1647082 for SSE, R-squared, and SST, respectively. These findings confirm the accuracy of the microcontroller that was programmed by incorporating a model in precisely measuring the relative permittivity of dielectric materials and capacitance values, with an R-squared value above 0.95 following capacitor literature benchmarks. The novelty of this study is that this configuration enabled the precise assessment of both permittivity and the charge-discharge characteristics of the dielectric materials within the capacitor. This methodology made it possible to accurately measure the permittivity and charge-discharge characteristics of dielectric materials within a capacitor. The scientific significance of this research lies in its ability to provide a carefully developed instrument capable of investigating the permittivity of dielectric materials and capacitor capacitance measurements. Scholars, international engineering communities, and academics can use this technological breakthrough to advance research into dielectric material properties and capacitor characteristics.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":"393 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139244903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production analysis of manufacturing industry in a single vacation policy under disaster","authors":"Jeyakumar S, Logapriya B","doi":"10.21595/mme.2023.23737","DOIUrl":"https://doi.org/10.21595/mme.2023.23737","url":null,"abstract":"The disaster in queueing system with second optional service is considered. Arriving customer of this system will receive the essential service and optional second service if needed. When the system is interrupted by the disaster, the server initiates the repair period making all the customer leave the system immediately. The server, when idle, takes single vacation. The disaster cannot happen when server is under vacation or in repair period. The above queueing system is analysed using supplementary variable technique to obtain the probability generating function for various parameters and effects of parameters are explained graphically with numerical illustrations.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139250244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An efficiency calculation model for ball screws by accounting for lead errors","authors":"Yishen Zhang, Chang-Guang Zhou, Hutian Feng","doi":"10.21595/mme.2023.23735","DOIUrl":"https://doi.org/10.21595/mme.2023.23735","url":null,"abstract":"Transmission efficiency is a pivotal indicator, providing a comprehensive view of the overall performance of a ball screw. While extensive research has predominantly focused on computing transmission efficiency across various operating conditions, the factors influencing the variability have often been overlooked. This study introduces an innovative method for computing transmission efficiency, which considers lead error, drawing on deformation coordination theory and load distribution. Multiple ball screws of varying precision grades underwent rigorous testing to quantify lead errors. Subsequently, each screw was matched with an identical set of nuts to measure the respective transmission efficiencies. Experimental results reveal a linear correlation between lead error and transmission efficiency when both lead error and uneven ball load distribution in ball screws are considered. The relative error between the calculated transmission efficiency results and experimental values for ball screws of different precision grades falls within the range of 0 % to 7.42 %, confirming the validity of the proposed model in this paper.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139265714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on road damage recognition and classification based on improved VGG-19","authors":"Jiaqi Wang, Kaihang Wang, Kexin Li","doi":"10.21595/mme.2023.23455","DOIUrl":"https://doi.org/10.21595/mme.2023.23455","url":null,"abstract":"In recent years, methods of road damage detection, recognition and classification have achieved remarkable results, but there are still problems of efficient and accurate damage detection, recognition and classification. In order to solve this problem, this paper proposes a road damage VGG-19 model construction method that can be used for road damage detection. The road damage image is processed by digital image processing technology (DIP), and then combined with the improved VGG-19 network model to study the method of improving the recognition speed and accuracy of VGG-19 road damage model. Based on the performance evaluation index of neural network model, the feasibility of the improved VGG-19 method is verified. The results show that compared with the traditional VGG-19 model, the road damage VGG-19 road damage recognition model proposed in this paper shortens the training time by 79 % and the average test time by 68 %. In the performance evaluation of the neural network model, the comprehensive performance index is improved by 2.4 % compared with the traditional VGG-19 network model. The research is helpful to improve the model performance of VGG-19 road damage identification network model and its fit to road damages.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135345699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel model for predicting tenacity and unevenness of ring-spun yarn: a special case in textile engineering","authors":"V. G. V. Putra, JulianyNingsih Mohamad","doi":"10.21595/mme.2023.23406","DOIUrl":"https://doi.org/10.21595/mme.2023.23406","url":null,"abstract":"This study aimed to model the unevenness and tenacity of ring-spun yarn in a special case in textile engineering using response surface methodology. Yarn number and front roll speed were input variables, while yarn tenacity and unevenness were response/output variables. This study showed that the response surface methodology (RSM) could predict the yarn’s tenacity and unevenness with the yarn coefficient of determination (R2) values of 0.99 and 0.98 and with the error sum of square (SS residual) values 0.00187 and 0.003215, respectively. We also found that an artificial neural network (ANN) could predict the yarn's tenacity and unevenness with the yarn coefficient of determination (R2) values of 0.51 and 0.63 and with the error sum of square (SS residual) values 1.48 and 0.856, respectively. It was concluded that the response surface methodology (RSM) and artificial neural network (ANN) could predict the yarn's tenacity and unevenness. Response surface methodology (RSM) predicts yarn characteristics better than ANN with MIMO (multiple inputs, multiple outputs) modeling. The novelty of this study is that we used RSM and ANN for the first time to obtain the tenacity and unevenness of ring-spun yarn accurately. A simpler approach was employed in this study for predicting tenacity and unevenness using RSM and ANN; however, future research holds the potential for incorporating advanced mathematical models to enhance the prediction. This research suggests that RSM and ANN can be applied to predicting the tenacity and unevenness of ring-spun yarn. The scientific application of this research is that the investigation will benefit practitioners in the textile industry to optimize yarn parameters by ring spinning machines.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47906901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Yaroshevich, V. Grabovets, Тetjana Yaroshevich, I. Pavlova, I.O. Bandura
{"title":"On the effect of vibrational capture of rotation of an unbalanced rotor","authors":"N. Yaroshevich, V. Grabovets, Тetjana Yaroshevich, I. Pavlova, I.O. Bandura","doi":"10.21595/mme.2023.23273","DOIUrl":"https://doi.org/10.21595/mme.2023.23273","url":null,"abstract":"The dynamics of an unbalanced rotor with a vibrating suspension axis and driven by an asynchronous electric motor of limited power is considered. Stationary (near stationary) modes of rotation of the rotor with a frequency equal to the vibration frequency of the axis are investigated. An explanation of the phenomenon of vibrational capture of rotation of an unbalanced rotor is given. The proposed mechanical interpretation of the effect allows deeper understanding of the classical results and conclusions. The obtained condition for the existence of a stationary mode allows us to estimate the frequency capture interval of the rotor. The case when the mode of vibration capture of rotation is not set is considered. For such a case, an expression for the vibrational moment is obtained, as well as an equation for slow motions. Attention is drawn to the possibility of occurrence in the considered modes of motion of slow (relative to the rotation frequency) rotor oscillations with sufficiently large amplitudes. It is demonstrated that the vibrational capture mode has the property of self-regulation; allows to stabilize the rotation frequency of an unbalanced rotor during load oscillations. Attention is drawn to the fact that in this mode of motion, there is certainly a transfer of energy either from the source of vibration to the rotor, or vice versa. The Sommerfeld effect in an oscillatory system with an inertial vibration exciter is represented by vibration capture of rotation of the vibration exciter by resonant oscillations of the carrier body. The theoretical results are confirmed by numerical modelling.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42105641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}