基于改进VGG-19的道路损伤识别与分类研究

Q4 Engineering
Jiaqi Wang, Kaihang Wang, Kexin Li
{"title":"基于改进VGG-19的道路损伤识别与分类研究","authors":"Jiaqi Wang, Kaihang Wang, Kexin Li","doi":"10.21595/mme.2023.23455","DOIUrl":null,"url":null,"abstract":"In recent years, methods of road damage detection, recognition and classification have achieved remarkable results, but there are still problems of efficient and accurate damage detection, recognition and classification. In order to solve this problem, this paper proposes a road damage VGG-19 model construction method that can be used for road damage detection. The road damage image is processed by digital image processing technology (DIP), and then combined with the improved VGG-19 network model to study the method of improving the recognition speed and accuracy of VGG-19 road damage model. Based on the performance evaluation index of neural network model, the feasibility of the improved VGG-19 method is verified. The results show that compared with the traditional VGG-19 model, the road damage VGG-19 road damage recognition model proposed in this paper shortens the training time by 79 % and the average test time by 68 %. In the performance evaluation of the neural network model, the comprehensive performance index is improved by 2.4 % compared with the traditional VGG-19 network model. The research is helpful to improve the model performance of VGG-19 road damage identification network model and its fit to road damages.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on road damage recognition and classification based on improved VGG-19\",\"authors\":\"Jiaqi Wang, Kaihang Wang, Kexin Li\",\"doi\":\"10.21595/mme.2023.23455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, methods of road damage detection, recognition and classification have achieved remarkable results, but there are still problems of efficient and accurate damage detection, recognition and classification. In order to solve this problem, this paper proposes a road damage VGG-19 model construction method that can be used for road damage detection. The road damage image is processed by digital image processing technology (DIP), and then combined with the improved VGG-19 network model to study the method of improving the recognition speed and accuracy of VGG-19 road damage model. Based on the performance evaluation index of neural network model, the feasibility of the improved VGG-19 method is verified. The results show that compared with the traditional VGG-19 model, the road damage VGG-19 road damage recognition model proposed in this paper shortens the training time by 79 % and the average test time by 68 %. In the performance evaluation of the neural network model, the comprehensive performance index is improved by 2.4 % compared with the traditional VGG-19 network model. The research is helpful to improve the model performance of VGG-19 road damage identification network model and its fit to road damages.\",\"PeriodicalId\":32958,\"journal\":{\"name\":\"Mathematical Models in Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/mme.2023.23455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/mme.2023.23455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

近年来,道路损伤检测、识别和分类方法取得了显著的成果,但如何实现高效、准确的损伤检测、识别和分类仍存在问题。为了解决这一问题,本文提出了一种可用于道路损伤检测的道路损伤VGG-19模型构建方法。采用数字图像处理技术(DIP)对道路损伤图像进行处理,然后结合改进的VGG-19网络模型,研究提高VGG-19道路损伤模型识别速度和精度的方法。基于神经网络模型的性能评价指标,验证了改进的VGG-19方法的可行性。结果表明,与传统的VGG-19模型相比,本文提出的VGG-19道路损伤识别模型的训练时间缩短了79%,平均测试时间缩短了68%。在神经网络模型的性能评价中,综合性能指标比传统的VGG-19网络模型提高了2.4%。该研究有助于提高VGG-19道路损伤识别网络模型的模型性能及其对道路损伤的拟合性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on road damage recognition and classification based on improved VGG-19
In recent years, methods of road damage detection, recognition and classification have achieved remarkable results, but there are still problems of efficient and accurate damage detection, recognition and classification. In order to solve this problem, this paper proposes a road damage VGG-19 model construction method that can be used for road damage detection. The road damage image is processed by digital image processing technology (DIP), and then combined with the improved VGG-19 network model to study the method of improving the recognition speed and accuracy of VGG-19 road damage model. Based on the performance evaluation index of neural network model, the feasibility of the improved VGG-19 method is verified. The results show that compared with the traditional VGG-19 model, the road damage VGG-19 road damage recognition model proposed in this paper shortens the training time by 79 % and the average test time by 68 %. In the performance evaluation of the neural network model, the comprehensive performance index is improved by 2.4 % compared with the traditional VGG-19 network model. The research is helpful to improve the model performance of VGG-19 road damage identification network model and its fit to road damages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
8
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信