Encyclopedia of Artificial Intelligence最新文献

筛选
英文 中文
Intelligent Software Agents Analysis in E-Commerce I 电子商务中的智能软件代理分析
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/978-1-59904-849-9.CH138
Xin Luo, S. Akkaladevi
{"title":"Intelligent Software Agents Analysis in E-Commerce I","authors":"Xin Luo, S. Akkaladevi","doi":"10.4018/978-1-59904-849-9.CH138","DOIUrl":"https://doi.org/10.4018/978-1-59904-849-9.CH138","url":null,"abstract":"Cowan et al. (2002) argued that the human cognitive ability to search for information and to evaluate their usefulness is extremely limited in comparison to those of computers. In detail, it's cumbersome and time-consuming for a person to search for information from limited resources and to evaluate the information's usefulness. They further indicated that while people are able to perform several queries in parallel and are good at drawing parallels and analogies between pieces of information, advanced systems that embody ISA architecture are far more effective in terms of calculation power and parallel processing abilities, particularly in the quantities of material they can process (Cowan et al. 2002). According to Bradshaw (1997), information complexity will continue to increase dramatically in the coming decades. He further contended that the dynamic and distributed nature of both data and applications require that software not merely respond to requests for information but intelligently anticipate, adapt, and actively seek ways to support users. E-commerce applications based on agent-oriented e-commerce systems have great potential. Agents can be designed using the latest web-based technologies, such as Java, XML, and HTTP, and can dynamically discover and compose E-services and mediate interactions to handle routine tasks, monitor activities, set up contracts, execute business processes, and find the best services (Shih et al., 2003). The main advantages of using these technologies are their simplicity of usage , ubiquitous nature, and their heterogeneity and platform independence (Begin and Boisvert, 2002). XML will likely become the standard language for agent-oriented E-commerce interactions to encode exchanged messages, documents, invoices, orders, service descriptions, and other information. HTTP, the dominant WWW protocol, can be used to provide many services, such as robust and scalable web serv-ers, firewall access, and levels of security for these E-commerce applications. Agents can be made to work individually, as well as in a collaborative manner to perform more complex tasks (Franklin and Graesser, 1996). For example, to purchase a product on the Internet, a group of agents can exchange messages in a conversation to find the best deal, can bid in an auction for the product, can arrange financing, can select a shipper, and can also track the order. Multi-agent systems (groups of agents collaborating to achieve some purpose) are critical for large-scale e-commerce applications, especially B2B interactions such as service provisioning, supply chain, negotiation, and fulfillment, etc. The grouping of agents can be static or dynamic depending on the …","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125579634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Automated Cryptanalysis 自动密码分析
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/9781599048499.ch028
O. Grošek, Pavol Zajac
{"title":"Automated Cryptanalysis","authors":"O. Grošek, Pavol Zajac","doi":"10.4018/9781599048499.ch028","DOIUrl":"https://doi.org/10.4018/9781599048499.ch028","url":null,"abstract":"Classical ciphers are used to encrypt plaintext messages written in a natural language in such a way that they are readable for sender or intended recipient only. Many classical ciphers can be broken by brute-force search through the key-space. One of the pertinent problems arising in automated cryptanalysis is the plaintext recognition. A computer should be able to decide which of many possible decrypts are meaningful. This can be accomplished by means of a text scoring function, based, e.g. on n-grams or other text statistics. A scoring function can also be used in conjunction with AI methods to speedup cryptanalysis.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126889316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Agent-Based Intelligent System Modeling 基于agent的智能系统建模
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/978-1-59904-849-9.CH008
Z. Tang, Xiaoyu Huang, K. Bagchi
{"title":"Agent-Based Intelligent System Modeling","authors":"Z. Tang, Xiaoyu Huang, K. Bagchi","doi":"10.4018/978-1-59904-849-9.CH008","DOIUrl":"https://doi.org/10.4018/978-1-59904-849-9.CH008","url":null,"abstract":"An intelligent system is a system that has, similar to a living organism, a coherent set of components and subsystems working together to engage in goal-driven activities. In general, an intelligent system is able to sense and respond to the changing environment; gather and store information in its memory; learn from earlier experiences; adapt its behaviors to meet new challenges; and achieve its pre-determined or evolving objectives. The system may start with a set of predefined stimulusresponse rules. Those rules may be revised and improved through learning. Anytime the system encounters a situation, it evaluates and selects the most appropriate rules from its memory to act upon. Most human organizations such as nations, governments, universities, and business firms, can be considered as intelligent systems. In recent years, researchers have developed frameworks for building organizations around intelligence, as opposed to traditional approaches that focus on products, processes, or functions (e.g., Liang, 2002; Gupta and Sharma, 2004). Today’s organizations must go beyond traditional goals of efficiency and effectiveness; they need to have organizational intelligence in order to adapt and survive in a continuously changing environment (Liebowitz, 1999). The intelligent behaviors of those organizations include monitoring of operations, listening and responding to stakeholders, watching the markets, gathering and analyzing data, creating and disseminating knowledge, learning, and effective decision making. Modeling intelligent systems has been a challenge for researchers. Intelligent systems, in particular, those involve multiple intelligent players, are complex systems where system dynamics does not follow clearly defined rules. Traditional system dynamics approaches or statistical modeling approaches rely on rather restrictive assumptions such as homogeneity of individuals in the system. Many complex systems have components or units which are also complex systems. This fact has significantly increased the difficulty of modeling intelligent systems. Agent-based modeling of complex systems such as ecological systems, stock market, and disaster recovery has recently garnered significant research interest from a wide spectrum of fields from politics, economics, sociology, mathematics, computer science, management, to information systems. Agent-based modeling is well suited for intelligent systems research as it offers a platform to study systems behavior based on individual actions and interactions. In the following, we present the concepts and illustrate how intelligent agents can be used in modeling intelligent systems. We start with basic concepts of intelligent agents. Then we define agent-based modeling (ABM) and discuss strengths and weaknesses of ABM. The next section applies ABM to intelligent system modeling. We use an example of technology diffusion for illustration. Research issues and directions are discussed next, followed by conclusi","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122005671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multi-Objective Evolutionary Algorithms 多目标进化算法
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/978-1-59904-849-9.CH167
Sanjoy Das, B. K. Panigrahi
{"title":"Multi-Objective Evolutionary Algorithms","authors":"Sanjoy Das, B. K. Panigrahi","doi":"10.4018/978-1-59904-849-9.CH167","DOIUrl":"https://doi.org/10.4018/978-1-59904-849-9.CH167","url":null,"abstract":"Real world optimization problems are often too complex to be solved through analytical means. Evolutionary algorithms, a class of algorithms that borrow paradigms from nature, are particularly well suited to address such problems. These algorithms are stochastic methods of optimization that have become immensely popular recently, because they are derivative-free methods, are not as prone to getting trapped in local minima (as they are population based), and are shown to work well for many complex optimization problems. Although evolutionary algorithms have conventionally focussed on optimizing single objective functions, most practical problems in engineering are inherently multi-objective in nature. Multi-objective evolutionary optimization is a relatively new, and rapidly expanding area of research in evolutionary computation that looks at ways to address these problems. In this chapter, we provide an overview of some of the most significant issues in multi-objective optimization (Deb, 2001).","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126931062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
A New Self-Organizing Map for Dissimilarity Data 一种新的不相似数据自组织映射
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/978-1-59904-849-9.CH182
T. Ho-Phuoc, A. Guérin-Dugué
{"title":"A New Self-Organizing Map for Dissimilarity Data","authors":"T. Ho-Phuoc, A. Guérin-Dugué","doi":"10.4018/978-1-59904-849-9.CH182","DOIUrl":"https://doi.org/10.4018/978-1-59904-849-9.CH182","url":null,"abstract":"Adaptation of the Self-Organizing Map to dissimilarity data is of a growing interest. For many applications, vector representation is not available and but only proximity data (distance, dissimilarity, similarity, ranks ...). In this article, we present a new adaptation of the SOM algorithm which is compared with two existing ones. Three metrics for quality estimate (quantization and neighborhood) are used for comparison. Numerical experiments on artificial and real data show the algorithm quality. The strong point of the proposed algorithm comes from a more accurate prototype estimate which is one of the difficult parts of Dissimilarity SOM algorithms (DSOM).","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126396064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
ANN Application in the Field of Structural Concrete 人工神经网络在结构混凝土领域的应用
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/978-1-59904-849-9.CH018
Juan L. Pérez, I. Martínez, M. Herrador
{"title":"ANN Application in the Field of Structural Concrete","authors":"Juan L. Pérez, I. Martínez, M. Herrador","doi":"10.4018/978-1-59904-849-9.CH018","DOIUrl":"https://doi.org/10.4018/978-1-59904-849-9.CH018","url":null,"abstract":"Artificial Intelligence (AI) mechanisms are more and more frequently applied to all sorts of civil engineering problems. New methods and algorithms which allow civil engineers to use these techniques in a different way on diverse problems are available or being made available. One AI techniques stands out over the rest: Artificial Neural Networks (ANN). Their most remarkable traits are their ability to learn, the possibility of generalization and their tolerance towards mistakes. These characteristics make their use viable and cost-efficient in any field in general, and in Structural Engineering in particular. The most extended construction material nowadays is concrete, mainly because of its high resistance and its adaptability to formwork during its fabrication process. Along this chapter we will find different applications of ANNs to structural concrete.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123456572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Full-Text Search Engines for Databases 数据库全文搜索引擎
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/978-1-59904-849-9.CH099
L. Kovács, D. Tikk
{"title":"Full-Text Search Engines for Databases","authors":"L. Kovács, D. Tikk","doi":"10.4018/978-1-59904-849-9.CH099","DOIUrl":"https://doi.org/10.4018/978-1-59904-849-9.CH099","url":null,"abstract":"Current databases are able to store several Tbytes of free-text documents. The main purpose of a database from the user’s viewpoint is the efficient information retrieval. In the case of textual data, information retrieval mostly concerns the selection and the ranking of documents. The selection criteria can contain elements that apply to the content or the grammar of the language. In the traditional database management systems (DBMS), text manipulation is restricted to the usual string manipulation facilities, i.e. the exact matching of substrings. Although the new SQL1999 standard enables the usage of more powerful regular expressions, this traditional approach has some major drawbacks. The traditional string-level operations are very costly for large documents as they work without task-oriented index structures. The required full-text management operations belong to text mining, an interdisciplinary field of natural language processing and data mining. As the traditional DBMS engine is inefficient for these operations, database management systems are usually extended with a special full-text search (FTS) engine module. We present here the particular solution of Oracle; there for making the full-text querying more efficient, a special engine was developed that performs the preparation of full-text queries and provides a set of language and semantic specific query operators.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123556047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Kohonen Maps and TS Algorithms Kohonen地图和TS算法
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/978-1-59904-849-9.CH147
Marie-Thérèse Boyer-Xambeu, Ghislain Deleplace, P. Gaubert, L. Gillard
{"title":"Kohonen Maps and TS Algorithms","authors":"Marie-Thérèse Boyer-Xambeu, Ghislain Deleplace, P. Gaubert, L. Gillard","doi":"10.4018/978-1-59904-849-9.CH147","DOIUrl":"https://doi.org/10.4018/978-1-59904-849-9.CH147","url":null,"abstract":"","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124597546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neural Networks and Equilibria, Synchronization, and Time Lags 神经网络与平衡、同步和时间滞后
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/978-1-59904-849-9.CH178
D. Danciu, V. Răsvan
{"title":"Neural Networks and Equilibria, Synchronization, and Time Lags","authors":"D. Danciu, V. Răsvan","doi":"10.4018/978-1-59904-849-9.CH178","DOIUrl":"https://doi.org/10.4018/978-1-59904-849-9.CH178","url":null,"abstract":"All neural networks, both natural and artificial, are characterized by two kinds of dynamics. The first one is concerned with what we would call “learning dynamics”, in fact the sequential (discrete time) dynamics of the choice of synaptic weights. The second one is the intrinsic dynamics of the neural network viewed as a dynamical system after the weights have been established via learning. Regarding the second dynamics, the emergent computational capabilities of a recurrent neural network can be achieved provided it has many equilibria. The network task is achieved provided it approaches these equilibria. But the dynamical system has a dynamics induced a posteriori by the learning process that had established the synaptic weights. It is not compulsory that this a posteriori dynamics should have the required properties, hence they have to be checked separately. The standard stability properties (Lyapunov, asymptotic and exponential stability) are defined for a single equilibrium. Their counterpart for several equilibria are: mutability, global asymptotics, gradient behavior. For the definitions of these general concepts the reader is sent to Gelig et. al., (1978), Leonov et. al., (1992). In the last decades, the number of recurrent neural networks’ applications increased, they being designed for classification, identification and complex image, visual and spatio-temporal processing in fields as engineering, chemistry, biology and medicine (see, for instance: Fortuna et. al., 2001; Fink, 2004; Atencia et. al., 2004; Iwahori et. al., 2005; Maurer et. al., 2005; Guirguis & Ghoneimy, 2007). All these applications are mainly based on the existence of several equilibria for such networks, requiring them the “good behavior” properties above discussed. Another aspect of the qualitative analysis is the so-called synchronization problem, when an external stimulus, in most cases periodic or almost periodic has to be tracked (Gelig, 1982; Danciu, 2002). This problem is, from the mathematical point of view, nothing more but existence, uniqueness and global stability of forced oscillations. In the last decades the neural networks dynamics models have been modified once more by introducing the transmission delays. The standard model of a Hopfield-type network with delay as considered in (Gopalsamy & He, 1994) is","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"22 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121003062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Learning-Based Planning 上优于计划
Encyclopedia of Artificial Intelligence Pub Date : 1900-01-01 DOI: 10.4018/978-1-59904-849-9.CH151
Sergio Jiménez Celorrio, Tomás de la Rosa Turbides
{"title":"Learning-Based Planning","authors":"Sergio Jiménez Celorrio, Tomás de la Rosa Turbides","doi":"10.4018/978-1-59904-849-9.CH151","DOIUrl":"https://doi.org/10.4018/978-1-59904-849-9.CH151","url":null,"abstract":"Automated Planning (AP) studies the generation of action sequences for problem solving. A problem in AP is defined by a state-transition function describing the dynamics of the world, the initial state of the world and the goals to be achieved. According to this definition, AP problems seem to be easily tackled by searching for a path in a graph, which is a well-studied problem. However, the graphs resulting from AP problems are so large that explicitly specifying them is not feasible. Thus, different approaches have been tried to address AP problems. Since the mid 90’s, new planning algorithms have enabled the solution of practical-size AP problems. Nevertheless, domain-independent planners still fail in solving complex AP problems, as solving planning tasks is a PSPACE-Complete problem (Bylander, 94). How do humans cope with this planning-inherent complexity? One answer is that our experience allows us to solve problems more quickly; we are endowed with learning skills that help us plan when problems are selected from a stable population. Inspire by this idea, the field of learning-based planning studies the development of AP systems able to modify their performance according to previous experiences. Since the first days, Artificial Intelligence (AI) has been concerned with the problem of Machine Learning (ML). As early as 1959, Arthur L. Samuel developed a prominent program that learned to improve its play in the game of checkers (Samuel, 1959). It is hardly surprising that ML has often been used to make changes in systems that perform tasks associated with AI, such as perception, robot control or AP. This article analyses the diverse ways ML can be used to improve AP processes. First, we review the major AP concepts and summarize the main research done in learning-based planning. Second, we describe current trends in applying ML to AP. Finally, we comment on the next avenues for combining AP and ML and conclude.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129648142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信