上优于计划

Sergio Jiménez Celorrio, Tomás de la Rosa Turbides
{"title":"上优于计划","authors":"Sergio Jiménez Celorrio, Tomás de la Rosa Turbides","doi":"10.4018/978-1-59904-849-9.CH151","DOIUrl":null,"url":null,"abstract":"Automated Planning (AP) studies the generation of action sequences for problem solving. A problem in AP is defined by a state-transition function describing the dynamics of the world, the initial state of the world and the goals to be achieved. According to this definition, AP problems seem to be easily tackled by searching for a path in a graph, which is a well-studied problem. However, the graphs resulting from AP problems are so large that explicitly specifying them is not feasible. Thus, different approaches have been tried to address AP problems. Since the mid 90’s, new planning algorithms have enabled the solution of practical-size AP problems. Nevertheless, domain-independent planners still fail in solving complex AP problems, as solving planning tasks is a PSPACE-Complete problem (Bylander, 94). How do humans cope with this planning-inherent complexity? One answer is that our experience allows us to solve problems more quickly; we are endowed with learning skills that help us plan when problems are selected from a stable population. Inspire by this idea, the field of learning-based planning studies the development of AP systems able to modify their performance according to previous experiences. Since the first days, Artificial Intelligence (AI) has been concerned with the problem of Machine Learning (ML). As early as 1959, Arthur L. Samuel developed a prominent program that learned to improve its play in the game of checkers (Samuel, 1959). It is hardly surprising that ML has often been used to make changes in systems that perform tasks associated with AI, such as perception, robot control or AP. This article analyses the diverse ways ML can be used to improve AP processes. First, we review the major AP concepts and summarize the main research done in learning-based planning. Second, we describe current trends in applying ML to AP. Finally, we comment on the next avenues for combining AP and ML and conclude.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning-Based Planning\",\"authors\":\"Sergio Jiménez Celorrio, Tomás de la Rosa Turbides\",\"doi\":\"10.4018/978-1-59904-849-9.CH151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated Planning (AP) studies the generation of action sequences for problem solving. A problem in AP is defined by a state-transition function describing the dynamics of the world, the initial state of the world and the goals to be achieved. According to this definition, AP problems seem to be easily tackled by searching for a path in a graph, which is a well-studied problem. However, the graphs resulting from AP problems are so large that explicitly specifying them is not feasible. Thus, different approaches have been tried to address AP problems. Since the mid 90’s, new planning algorithms have enabled the solution of practical-size AP problems. Nevertheless, domain-independent planners still fail in solving complex AP problems, as solving planning tasks is a PSPACE-Complete problem (Bylander, 94). How do humans cope with this planning-inherent complexity? One answer is that our experience allows us to solve problems more quickly; we are endowed with learning skills that help us plan when problems are selected from a stable population. Inspire by this idea, the field of learning-based planning studies the development of AP systems able to modify their performance according to previous experiences. Since the first days, Artificial Intelligence (AI) has been concerned with the problem of Machine Learning (ML). As early as 1959, Arthur L. Samuel developed a prominent program that learned to improve its play in the game of checkers (Samuel, 1959). It is hardly surprising that ML has often been used to make changes in systems that perform tasks associated with AI, such as perception, robot control or AP. This article analyses the diverse ways ML can be used to improve AP processes. First, we review the major AP concepts and summarize the main research done in learning-based planning. Second, we describe current trends in applying ML to AP. Finally, we comment on the next avenues for combining AP and ML and conclude.\",\"PeriodicalId\":320314,\"journal\":{\"name\":\"Encyclopedia of Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-59904-849-9.CH151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动化计划(AP)研究解决问题的行动序列的生成。AP中的问题由描述世界动态、世界初始状态和要实现的目标的状态转换函数定义。根据这个定义,AP问题似乎很容易通过在图中搜索路径来解决,这是一个研究得很好的问题。然而,由AP问题产生的图非常大,因此显式指定它们是不可行的。因此,已经尝试了不同的方法来解决AP问题。自90年代中期以来,新的规划算法已经能够解决实际规模的AP问题。然而,领域独立规划者仍然无法解决复杂的AP问题,因为解决规划任务是一个PSPACE-Complete问题(Bylander, 94)。人类如何应对这种内在的复杂性?一个答案是,我们的经验使我们能够更快地解决问题;当问题从一个稳定的群体中选择出来时,我们被赋予了学习技能,帮助我们制定计划。受这一思想的启发,基于学习的规划领域研究了能够根据以往经验修改其性能的AP系统的开发。从一开始,人工智能(AI)就一直关注机器学习(ML)的问题。早在1959年,Arthur L. Samuel就开发了一个杰出的程序,学习如何在跳棋游戏中提高其发挥(Samuel, 1959)。毫不奇怪,机器学习经常被用来改变执行与人工智能相关任务的系统,如感知、机器人控制或人工智能。本文分析了机器学习用于改进人工智能过程的各种方式。首先,我们回顾了基于学习的规划的主要概念,总结了基于学习的规划的主要研究。其次,我们描述了将ML应用于AP的当前趋势。最后,我们评论了结合AP和ML的下一个途径,并得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Based Planning
Automated Planning (AP) studies the generation of action sequences for problem solving. A problem in AP is defined by a state-transition function describing the dynamics of the world, the initial state of the world and the goals to be achieved. According to this definition, AP problems seem to be easily tackled by searching for a path in a graph, which is a well-studied problem. However, the graphs resulting from AP problems are so large that explicitly specifying them is not feasible. Thus, different approaches have been tried to address AP problems. Since the mid 90’s, new planning algorithms have enabled the solution of practical-size AP problems. Nevertheless, domain-independent planners still fail in solving complex AP problems, as solving planning tasks is a PSPACE-Complete problem (Bylander, 94). How do humans cope with this planning-inherent complexity? One answer is that our experience allows us to solve problems more quickly; we are endowed with learning skills that help us plan when problems are selected from a stable population. Inspire by this idea, the field of learning-based planning studies the development of AP systems able to modify their performance according to previous experiences. Since the first days, Artificial Intelligence (AI) has been concerned with the problem of Machine Learning (ML). As early as 1959, Arthur L. Samuel developed a prominent program that learned to improve its play in the game of checkers (Samuel, 1959). It is hardly surprising that ML has often been used to make changes in systems that perform tasks associated with AI, such as perception, robot control or AP. This article analyses the diverse ways ML can be used to improve AP processes. First, we review the major AP concepts and summarize the main research done in learning-based planning. Second, we describe current trends in applying ML to AP. Finally, we comment on the next avenues for combining AP and ML and conclude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信