{"title":"一种新的不相似数据自组织映射","authors":"T. Ho-Phuoc, A. Guérin-Dugué","doi":"10.4018/978-1-59904-849-9.CH182","DOIUrl":null,"url":null,"abstract":"Adaptation of the Self-Organizing Map to dissimilarity data is of a growing interest. For many applications, vector representation is not available and but only proximity data (distance, dissimilarity, similarity, ranks ...). In this article, we present a new adaptation of the SOM algorithm which is compared with two existing ones. Three metrics for quality estimate (quantization and neighborhood) are used for comparison. Numerical experiments on artificial and real data show the algorithm quality. The strong point of the proposed algorithm comes from a more accurate prototype estimate which is one of the difficult parts of Dissimilarity SOM algorithms (DSOM).","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Self-Organizing Map for Dissimilarity Data\",\"authors\":\"T. Ho-Phuoc, A. Guérin-Dugué\",\"doi\":\"10.4018/978-1-59904-849-9.CH182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptation of the Self-Organizing Map to dissimilarity data is of a growing interest. For many applications, vector representation is not available and but only proximity data (distance, dissimilarity, similarity, ranks ...). In this article, we present a new adaptation of the SOM algorithm which is compared with two existing ones. Three metrics for quality estimate (quantization and neighborhood) are used for comparison. Numerical experiments on artificial and real data show the algorithm quality. The strong point of the proposed algorithm comes from a more accurate prototype estimate which is one of the difficult parts of Dissimilarity SOM algorithms (DSOM).\",\"PeriodicalId\":320314,\"journal\":{\"name\":\"Encyclopedia of Artificial Intelligence\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-59904-849-9.CH182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptation of the Self-Organizing Map to dissimilarity data is of a growing interest. For many applications, vector representation is not available and but only proximity data (distance, dissimilarity, similarity, ranks ...). In this article, we present a new adaptation of the SOM algorithm which is compared with two existing ones. Three metrics for quality estimate (quantization and neighborhood) are used for comparison. Numerical experiments on artificial and real data show the algorithm quality. The strong point of the proposed algorithm comes from a more accurate prototype estimate which is one of the difficult parts of Dissimilarity SOM algorithms (DSOM).