MATHEdunesaPub Date : 2022-03-28DOI: 10.26740/mathedunesa.v11n2.p341-356
Putri Nur Indah, Dini Kinati Fardah
{"title":"KESALAHAN SISWA DALAM MENYELESAIKAN SOAL CERITA MATEMATIKA DITINJAU DARI GAYA BELAJAR GLOBAL – ANALITIK DISERTAI SCAFFOLDINGNYA","authors":"Putri Nur Indah, Dini Kinati Fardah","doi":"10.26740/mathedunesa.v11n2.p341-356","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n2.p341-356","url":null,"abstract":"Guru perlu mengetahui kesalahan siswa guna melihat pemahaman siswa sehingga proses pembelajaran berjalan maksimal. Masalah yang dapat digunakan untuk mengetahui kesalahan siswa yakni soal cerita karena dalam menyelesaikannya kemampuan siswa akan berbeda–beda dipengaruhi oleh gaya belajarnya. Penelitian ini merupakan penelitian deskriptif kulitatif yang bertujuan untuk mendeskripsikan kesalahan siswa dalam menyelesaikan soal cerita ditinjau dari gaya belajar global–analitik disertai scaffolding dalam mengatasinya. Subjek dalam penelitian ini berjumlah 4 siswa dengan masing–masing 2 siswa di setiap gaya belajar. Metode pengumpulan data yang digunakan yakni angket, tes dan wawancara. Indikator yang digunakan yakni indikator kesalahan Newman. Hasil penelitian menunjukkan siswa bergaya belajar global dominan memenuhi 2 indikator yakni kesalahan proses penyelesaian dan penulisan kesimpulan. Sedangkan siswa bergaya belajar analitik dominan memenuhi 4 indikator yakni kesalahan memahami, transformasi, proses penyelesaian dan penulisan kesimpulan. Scaffolding yang diberikan di setiap kesalahan yakni, pada kesalahan memahami menggunakan strategi membaca kembali soal yang diberikan. Pada kesalahan transformasi, siswa bergaya belajar global tidak diberikan scaffolding berupa strategi explaining dan developing conceptual thinking. Pada kesalahan proses penyelesaian dan penulisan kesimpulan, menggunakan strategi reviewing dan strategi restructuring. Guna meminimalisir kesalahan yang dialami siswa, hasil penelitian dapat digunakan sebagai masukan guru agar membiasakan siswa menyelesaikan soal cerita matematika dan memberikan scaffolding di setiap tahap kesalahan. \u0000Kata Kunci : Kesalahan siswa , Soal Cerita Matematika, Gaya Belajar Global–Analitik, Scaffolding.","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42933838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MATHEdunesaPub Date : 2022-03-21DOI: 10.26740/mathedunesa.v11n2.p328-340
Nikmatus Savira Aprilianda, Susanah Susanah
{"title":"PROFILE OF STUDENTS’ MATHEMATICAL CONNECTION ABILITY IN SOLVING MATHEMATICS PROBLEMS BASED ON VISUALIZER AND VERBALIZER COGNITIVE STYLE","authors":"Nikmatus Savira Aprilianda, Susanah Susanah","doi":"10.26740/mathedunesa.v11n2.p328-340","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n2.p328-340","url":null,"abstract":"Mathematical connection ability is the ability of students to connect mathematical ideas and concepts in a structured way to solve various problems both inside and outside mathematics. Mathematical connection ability plays an important role in the process of solving mathematical problems. Cognitive style is one of the factors that effect mathematical connection abilities. This research is a qualitative descriptive study that aims to describe the students' mathematical connection skills with visualizer and verbalizer cognitive styles in solving mathematics problems. The research subjects consisted of two grade IX students who each had visualizer and verbalizer cognitive styles. The instrument used was the researcher herself, VVQ (visualizer verbalizer questionnaire), a mathematical connection ability test, and interview guidelines. In this study, the material of plane area and Pythagorean theorem are used for test mathematical connection skills. The results obtained are students with visualizer cognitive style get a good category for their mathematical connection ability in solving mathematics problems because they meet seven good indicators and one sufficient indicator from the mathematical connection ability in solving problems indicator, while students with verbalizer cognitive style get sufficient categories because they meet three good indicators, four sufficient indicators, and one less indicator from mathematical connection ability in solving problems indicator. Therefore, teachers are expected to be able to train students with questions in the context of everyday life that have a higher level of mathematical connection so that they can improve their connection skills and also train with variety exercices presentation so student with each cognitive style can be trained to understand a given problem.","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41639129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MATHEdunesaPub Date : 2022-01-30DOI: 10.26740/mathedunesa.v11n1.p311-319
Amirah Amirah, Mega Teguh Budiarto
{"title":"Etnomatematika : Konsep Matematika pada Budaya Sidoarjo","authors":"Amirah Amirah, Mega Teguh Budiarto","doi":"10.26740/mathedunesa.v11n1.p311-319","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n1.p311-319","url":null,"abstract":"Matematika dan budaya adalah sesuatu yang tidak dapat dipisahkan dalam kehidupan sehari-hari. Etnomatematika hadir untuk menjembatani antara matematika dan budaya khususnya dalam pembelajaran matematika. Penelitian ini bertujuan untuk mendeskripsikan etnomatematika pada tiga sistem budaya Sidoarjo yaitu kesenian (batik tulis Sekardangan), sistem religi/keagamaan (Masjid Agung Sidoarjo), dan sistem mata pencaharian hidup (kerajinan anyaman bambu). Jenis penelitian yang digunakan yaitu penelitian kualitatif dengan menggunakan pendekatan etnografi. Data diperoleh dengan wawancara, observasi, dan dokumentasi. Hasil penelitian yang diperoleh memperlihatkan bahwa praktik budaya masyarakat Sidoarjo mengandung aktivitas etnomatematika seperti membilang, mengukur, mendesain, menentukan letak, bermain, dan menjelaskan. Selain itu, berdasarkan kajian etnomatematika terhadap objek budaya Sidoarjo ditemukan beberapa konsep matematika antara lain transformasi geometri, bangun datar, serta bangun ruang. Dengan demikian, budaya Sidoarjo dapat dimanfaatkan sebagai sumber pembelajaran matematika kontekstual. \u0000Kata Kunci: Etnomatematika, Budaya Sidoarjo, Konsep Matematika","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42535781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MATHEdunesaPub Date : 2022-01-30DOI: 10.26740/mathedunesa.v11n1.p320-327
Fatimah Ihza Aulia, I. Kurniasari
{"title":"Student's Error Analysis In Solving Definite Integral Problem Based On Multiple Intelligences","authors":"Fatimah Ihza Aulia, I. Kurniasari","doi":"10.26740/mathedunesa.v11n1.p320-327","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n1.p320-327","url":null,"abstract":"One of the factors that students perform errors in solving mathematic problem is student’s intelligence. Gardner mentioned there are eight types of multiple intelligences, there are linguistic, logical mathematical, kinesthetic, musical, spatial, interpersonal, intrapersonal and naturalistic. Student’s error can be analyzed using Newman’s error analysis which contains five types of errors, there are reading error, comprehension error, transformation error, process skill error, and encoding error. This research is descriptive qualitative research which aims to describe the types of student’s error in solving definite integral based on multiple intelligences. The subjects of this research are three grade XII senior high school students in Sidoarjo whom have intelligences related to mathematic, there are logical mathematical intelligence, linguistic intelligence and spatial intelligence. Data was collected by giving multiple intelligences test, definite integral problems and interview. Data analysis technique are data reduction, data presentation and data verification. The result of this research showed that: (1) students with logical mathematical intelligence perform transformation error, process skill error and kesalahan encoding error; (2) students with linguistic intelligence perform reading error, comprehension error, transformation error, process skill error and encoding error; (3) students with spatial intelligence perform reading error, transformation error and encoding error.","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44570989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MATHEdunesaPub Date : 2022-01-28DOI: 10.26740/mathedunesa.v11n1.p302-310
Yazid Wafa' As Salafy, S. Susanah
{"title":"Perbandingan Literasi Matematika Siswa Kelas VIII SMP dalam Pembelajaran Model Eliciting Activities (MEAs) dan Pembelajaran Konvensional","authors":"Yazid Wafa' As Salafy, S. Susanah","doi":"10.26740/mathedunesa.v11n1.p302-310","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n1.p302-310","url":null,"abstract":"Literasi matematika merupakan kemampuan seseorang untuk merumuskan, menggunakan, dan menginterpretasikan matematika melalui pembelajaran yang berhubungan dengan.kehidupan.sehari-hari. Penelitian ini bertujuan.untuk menjelaskan perbandingan pembelajaran Model Eliciting Activities (MEAs) dan pembelajaran konvensional dalam literasi matematika siswa kelas VIII SMP. Penelitian ini termasuk dalam penelitian kuasi eksperimen.dengan.desain.nonequivalent.pre-test.dan.post-test control.group.design. Dari hasil rata-rata skor post-test literasi matematika siswa kelas eksperimen adalah 13,81, sedangkan kelas kontrol adalah 7,19. Kemudian untuk hasil rata-rata skor normalized gain literasi matematika siswa kelas eksperimen adalah 0,5253, sedangkan kelas kontrol -0,0006. Berdasarkan pengolahan data diperoleh bahwa terdapat perbandingan literasi matematika siswa yang memperoleh pembelajaran Model Eliciting Activities (MEAs) dengan model pembelajaran konvensional, dan literasi matematika siswa dengan pembelajaran Model Eliciting Activities (MEAs) lebih baik daripada literasi matematika siswa dengan pembelajaran konvensional.","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42028614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MATHEdunesaPub Date : 2022-01-28DOI: 10.26740/mathedunesa.v11n1.p278-286
Diah Lutfiana Dewi, R. Ekawati
{"title":"STUDENTS’ NUMERACY SKILLS IN SOLVING THE FOURTH LEVEL OF MINIMUM COMPETENCY ASSESSMENT QUESTION DEVELOPMENT ON RATIO AND PROPORTION","authors":"Diah Lutfiana Dewi, R. Ekawati","doi":"10.26740/mathedunesa.v11n1.p278-286","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n1.p278-286","url":null,"abstract":"Abstract \u0000Minimum Competency Assesment measures two basic competencies, namely reading literacy and numeracy literacy. PISA results showed that the Indonesian students’ ability in the mathematics category is relatively low. Numeracy is an ability to use mathematics to solve daily life problems. One of the closely related to everyday life mathematical topics is ratio and proportion. However, there are still many students’ difficulties in solving problems related to ratios and proportions which are basically the basis concept for mathematical knowledge and science understanding. Therefore, it’s necessary to conduct a students' numeracy skills analysis related to ratios and proportions in order to facilitate the process in improving students' abilities. This study aims to describe students' numeracy skills in solving the AKM questions development on ratio and proportion with a qualitative descriptive approach. The subjects of this study were 8th grade students who participate in AKM. Researcher used test and interviews as collect data techniques which was then analyzed in three stages, namely data reduction, data presentation, and verification. The result showed that there are students' numeracy skills indicators that haven’t been fully achieved, including students' ability to analyze information presented in various forms (diagrams, tables, etc.) and to interpret the analysis results to make decisions. While the most often appear indicator is the students’ ability to use various kinds of numbers or symbols to solve daily life problems. The results of this study can be used as a basis for adjusting learning models and strategies as an effort to improve students' numeracy skills. \u0000Keywords: numeracy skills, AKM, ratio and proportion. \u0000Abstrak \u0000Asesmen Kompetensi Minimum mengukur dua kompetensi mendasar, yakni literasi membaca dan literasi numerasi. Hasil PISA menunjukkan bahwa kemampuan siswa Indonesia dalam kategori matematika relatif rendah. Numerasi merupakan kemampuan seseorang dalam menggunakan matematika untuk menyelesaikan permasalahan dalam kehidupan sehari-hari. Salah satu topik matematika yang berkaitan erat dengan kehidupan sehari-hari adalah rasio dan proporsi. Akan tetapi, masih banyak ditemukan kesulitan yang dialami oleh siswa dalam menyelesaikan permasalahan terkait rasio dan proporsi yang pada dasarnya merupakan konsep dasar untuk pemahaman konsep pengetahuan matematika maupun sains. Oleh karena itu, perlu dilakukan suatu analisis terhadap kemampuan numerasi siswa terkait rasio dan proporsi guna memfasilitasi proses dalam meningkatkan kemampuan siswa. Penelitian ini bertujuan untuk mendeskripsikan kemampuan numerasi siswa dalam menyelesaikan pengembangan soal AKM pada subdomain rasio dan proporsi dengan pendekatan deskriptif kualitatif. Subjek penelitian ini adalah siswa kelas 8 yang terpilih sebagai peserta AKM. Peneliti menggunakan tes dan wawancara sebagai teknik untuk mengumpulkan data yang kemudian dianalisis dengan tiga tahapan","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42138328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MATHEdunesaPub Date : 2022-01-28DOI: 10.26740/mathedunesa.v11n1.p287-301
Lupita Wulandari, R. Ekawati
{"title":"ANALYSIS OF LEARNER’S CONJECTURE ABILITY IN SOLVING OPEN-ENDED PROBLEMS","authors":"Lupita Wulandari, R. Ekawati","doi":"10.26740/mathedunesa.v11n1.p287-301","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n1.p287-301","url":null,"abstract":"Conjecture will always be used by learners in problem solving, because the conjecture itself is tied to activities such as logical reasoning, translating problems, analyzing and evaluating an information to obtain valid decisions related to problem solving, where the conjecture is also able to develop the learning process of the learner in making a statement, especially with the help of open problems in its application, Which can make learners morecreative. This research aims to illustrate the conjecture ability of learners in open-ended problems with descriptive types of research and qualitative approaches to number pattern material, especially generalizing patterns. The subjects of the study are four learners who have a high and moderate level of mathematical ability and are willing to take part in interviews. The results showed that all subjects have not been able to perform every stage on constructing the conjecture, especially in the stage of arguing the conjecture and there is one subject who does not do the stage of proof of the conjecture because it is confident in the formula that has been given by the teacher. So that learning activities are needed in which there is problem solving that collects the ability of learners' contours, open-ended problems can also be one of the problem choices that can help students build their thought processes independently, and not bound by the formula of teachers or books.","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42688087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MATHEdunesaPub Date : 2022-01-27DOI: 10.26740/mathedunesa.v11n1.p230-242
Salsabila Setia Insani, Janet Trineke Manoy
{"title":"PETA KONSEP DAN MISKONSEPSI MATERI BANGUN DATAR SEGI EMPAT","authors":"Salsabila Setia Insani, Janet Trineke Manoy","doi":"10.26740/mathedunesa.v11n1.p230-242","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n1.p230-242","url":null,"abstract":"Abstrak Geometri merupakan salah satu cabang matematika yang dipelajari di semua jenjang pendidikan dan sering ditemui di kehidupan sehari-hari namun peserta didik sering mengalami kesalahan konsep dasar atau yang biasa disebut miskonsepsi, dan hal ini tidak seharusnya dibiarkan melainkan harus dibimbing dengan strategi yang tepat. Penelitian ini bertujuan untuk mendeskripsikan penggunaan peta konsep untuk mengatasi miskonsepsi peserta didik pada materi bangun datar segiempat. Penelitian ini menggunakan penelitian tindakan dengan empat subjek kelas VII SMP yang belum menerima materi segi empat pada jenjang SMP. Teknik pengumpulan data menggunakan Lembar kerja Peserta didik (LKPD), peta konsep, dan wawancara. LKPD pertama diberikan kepada peserta didik kelas VII yang belum menerima materi bangun datar segi empat pada jenjang SMP dan didapat keempat peserta didik mengalami miskonsepsi yang berbeda, kemudian pemberian angket serta dilakukan wawancara untuk melihat kesesuaian dengan hasil LKPD yang dikerjakan. Selanjutnya peserta didik diminta membuat peta konsep bangun datar segi empat dengan tujuan memahami unsur-unsur bangun datar, seperti sudut, sisi, Diagonal serta menggambarkan bentuk segiempat tersebut. Setelah membuat peta konsep, peserta didik diberikan LKPD kedua didapat keempat peserta didik masih mengalami miskonsepsi yang hampir sama dengan miskonsepsi sebelumnya. Penjelasan tentang peta konsep yang kurang mendalam dan hanya dikenalkan sekali saja membuat peta konsep yang dibuat peserta didik kurang berpengaruh dalam mengatasi miskonsepsi. \u0000Kata Kunci : Miskonsepsi, Peta Konsep, Bangun Datar Segiempat","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46222756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MATHEdunesaPub Date : 2022-01-27DOI: 10.26740/mathedunesa.v11n1.p268-277
Utari Nur Masita Mardiyanti, Rini Setianingsih
{"title":"Profil Siswa SMA dalam Memecahkan Masalah Matematika Ditinjau Dari Gaya Berfikir","authors":"Utari Nur Masita Mardiyanti, Rini Setianingsih","doi":"10.26740/mathedunesa.v11n1.p268-277","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n1.p268-277","url":null,"abstract":"Setiap siswa memiliki kemampuan yang berbeda dalam menyelesaikan suatu permasalahan, dalam hal ini adalah permasalahan Matematika. Perbedaan tersebut disebabkan oleh gaya berpikir yang dimiliki oleh setiap siswa. Gaya berpikir ini berpengaruh pada cara siswa dalam memproses suatu permasalahan, mulai dari memahami, merencanakan, melaksanakan, dan memeriksa kembali. Untuk itu, dilakukan penelitian yang bertujuan untuk mengelompokkan siswa berdasarkan gaya berpikirnya dan mengidentifikasi karakteristik langkah-langkah dalam menyelesaikan permasalahan matematika. Metode penelitian dilakukan dengan 4 pedekatan, yakni: angket, TKM, TPM, dan wawancara. Dari hasil penelitian didapatkan bahwa gaya berpikir siswa dalam menyelesaikan permasalah matematika yakni: (1) tipe sekuensial konkret (SK) menuliskan informasi dari soal secara lengkap, langkah penyelesaian terurut dan memvisualisasikan; (2) tipe sekuensial Abstrak (SA) menuliskan informasi dari soal secara lengkap, terurut dan tidak mevisualisasikan; (3) tipe acak konkret (AK) tidak menuliskan informasi dari soal, langkah penyelesaian kurang runtut, acak, dan memvisualisasikan; (4) tipe acak konkret (AA) menuliskan informasi dari soal secara acak, langkah penyelesaian kurang runtut, dan tidak memvisualisasikan. Setelah dikelompokan, didapatkan bahwa tipe SK dan AA 27,5%, tipe SA 20 %, tipe AK 25%. \u0000Kata Kunci: Siswa SMA, gaya berpikir, permasalahan matematika.","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41898727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MATHEdunesaPub Date : 2022-01-27DOI: 10.26740/mathedunesa.v11n1.p243-254
Revlin Alifia Kusuma, J. Manoy
{"title":"MATHEMATICAL COMMUNICATION OF STUDENTS IN COMPLETING SPLTV IN TERMS OF MATHEMATICAL ABILITY","authors":"Revlin Alifia Kusuma, J. Manoy","doi":"10.26740/mathedunesa.v11n1.p243-254","DOIUrl":"https://doi.org/10.26740/mathedunesa.v11n1.p243-254","url":null,"abstract":"Mathematics learning will achieve satisfactory results if it can meet all standards in the learning process, including mathematical communication skills. Mathematical communication is an ability to understand problems by modeling them into mathematical symbols and explaining mathematical ideas in writing or orally. This research with descriptive qualitative method aims to describe the mathematical communication skills of students with high and moderate mathematical abilities in class X in solving SPLTV questions. The data collection technique used a written test in the form of SPLTV material story questions and interviews as supporting data. The results showed that students who had high mathematical ability fulfilled all indicators of mathematical communication correctly, while students who had moderate mathematical ability met the indicators of mathematical communication in understanding the core of the problem and mentioning what is known and asked in the question. It is hoped that the teacher will be able to improve students' mathematical communication skills by applying story questions whose answers have mathematical communication indicators so that students are increasingly able to express mathematical ideas both in writing and verbally and are able to fulfill all indicators of mathematical communication.","PeriodicalId":31516,"journal":{"name":"MATHEdunesa","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46257015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}