{"title":"Laser additive manufacturing technology in titanium 64 implant of microstructure fabrication and analysis","authors":"S. Lin, C. C. Lin, D. Lin, C. Chuang","doi":"10.1109/NEMS.2013.6559801","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559801","url":null,"abstract":"Laser additive manufacturing technology is very attractive for industry applications due to the characterizations of rapid manufacture, flexible parameters select, customize, and complex 3D object fabricate. In this article, an EOS M-type direct metal laser sintering (DMLS) system was used to manufacture for customized hip implant with an IPG fiber laser. The part building process takes place inside an enclosed chamber filled with argon gas to minimize oxidation powdered material. We are successful design and producing an implant of imitation bone microstructure in titanium alloy. From the SEM analysis image, an approximately 100% dense surface has be observed. The mainly composition of selective laser additive manufacturing product are acicular structure of alpha-phase titanium. X-ray diffraction patterns also are observed the alpha-phase and beta-phase mixture. This customized hip implant is used to clinical application for replacement the golden retriever's femoral head, and it get good results. Imitation bone structure can promote the biocompatible of titanium material and bone.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125676412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-cost rapid prototyping of flexible plastic paper based microfluidic devices","authors":"Yiqiang Fan, Huawei Li, Ying Yi, I. Foulds","doi":"10.1109/NEMS.2013.6559708","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559708","url":null,"abstract":"This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels was carefully studied for various laser powers and scanning speeds. After laser ablation of the microchannels on the plastic paper, a transparent poly (methyl methacrylate)(PMMA) film was thermally bonded to the plastic paper to enclose the channels. After connection of tubing, the device was ready to use. An example microfluidic device (droplet generator) was also fabricated using this technique. Due to the flexibility of the fabricated device, this technique can be used to fabricate 3D microfluidic devices. The fabrication process was simple and rapid without any requirement of cleanroom facilities.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114080131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianbin Su, D. Xiao, Xuezhong Wu, Zhihua Chen, Z. Hou
{"title":"Close-loop self-compensation of the coupling error for silicon micromachined gyroscope","authors":"Jianbin Su, D. Xiao, Xuezhong Wu, Zhihua Chen, Z. Hou","doi":"10.1109/NEMS.2013.6559893","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559893","url":null,"abstract":"This paper presents the detailed analysis and preliminary design and experiment for close-loop self-compensation of the coupling error for silicon micromachined gyroscope. A closed-loop feedback control technology is adopted, which uses electrostatic force to counteract the change of coupling stiffness. The electrostatic force is generated by the detection variation of coupling error. Comparing with the open-loop detection, the experimental results indicated evidently that the proposed method can effectively decrease the value of the coupling error, increase its stability by 38 times, while the scale factor of the microgyroscope remains unchanged.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"186 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122595910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Byeungleul Lee, Jinwoo Jeong, Chanseob Cho, Jinseok Kim, Bonghwan Kim, H. Kim, K. Chun
{"title":"Cantilever arrayed blood pressure sensor for arterial applanation tonometry","authors":"Byeungleul Lee, Jinwoo Jeong, Chanseob Cho, Jinseok Kim, Bonghwan Kim, H. Kim, K. Chun","doi":"10.1109/NEMS.2013.6559870","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559870","url":null,"abstract":"We developed a cantilever-arrayed blood pressure sensor array fabricated by (111) silicon bulk-micromachining for the noninvasive and continuous measurement of blood pressure. The blood pressure sensor measures the blood pressure based on the change in resistance of the piezoresistor on a 5-μm-thick-arrayed perforated membrane and 20-μm-thick metal pads. The length and width of the unit membrane are 210 and 310 μm, respectively. The width of the insensible zone between adjacent units is only 10 μm. The resistance change over contact force was measured to verify the performance. The good linearity of the result confirmed that the PDMS package transfers the forces appropriately. The measured sensitivity was about 4.5%/N. The maximum measurement range and resolution of the fabricated blood pressure sensor were greater than 900 mmHg and less than 1 mmHg, respectively.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122137005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three dimensional compensation spherical coils for compact atomic magnetometers","authors":"C. Zhuo, H. Dong, L. Xuan","doi":"10.1109/NEMS.2013.6559815","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559815","url":null,"abstract":"To avoid the broadening of Zeeman resonances of the vector atomic magnetometer working in an unshielded environment, the rapid and accurate magnetic compensation is necessary. A three dimensional mini spherical compensating system is presented, which can be used together with a chip-scale atomic magnetometer to realize an ultra-high precision field measurement. Based on the field gradient method, parameters are optimized to obtain a uniformity of 10-3 over the region of one half radius with a good tolerance on dimensional variations. A prototype applied in the single laser beam scheme has been built and the experimental results demonstrate the validity of the design.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122554468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Baek, Litao Yao, S. Seo, Hwa-Min Kim, D. Pyo, Pyo-Hwan Hong, Jung-Hwa Oh, D. Kong, Chanseob Cho, Jong-Hyun Lee, In-Yong Eom, Bonghwan Kim
{"title":"Superhydrophobic surface obtained using pyramidal PTFE film fabricated on RIE etched silicon","authors":"C. Baek, Litao Yao, S. Seo, Hwa-Min Kim, D. Pyo, Pyo-Hwan Hong, Jung-Hwa Oh, D. Kong, Chanseob Cho, Jong-Hyun Lee, In-Yong Eom, Bonghwan Kim","doi":"10.1109/NEMS.2013.6559869","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559869","url":null,"abstract":"We have developed a surface texturing process using a polytetrafluoroethylene coating with a pyramidal structure for obtaining superhydrophobic surfaces. In order to investigate the hydrophobic properties of the surface, we measured the contact angle and roughness values. The calculated roughness factor and root mean square roughness ranged from 2.47 to 2.6 and from 0.25 μm to 0.4 μm, respectively. The contact angle of a water droplet on the surface was greater than 150°; moreover, this angle was maintained for over 7 weeks. This observation implies that extremely low wettability is achievable on superhydrophobic surfaces.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"5 6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122601344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of substrate surface roughness on the properties of a planar-type CO2 sensor using evaporated Li3PO4 film","authors":"Hairong Wang, Peng Li, G. Sun, Zhuangde Jiang","doi":"10.1109/NEMS.2013.6559756","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559756","url":null,"abstract":"Planar-type potentiometric CO<sub>2</sub> gas sensors using thermal evaporated Li<sub>3</sub>PO<sub>4</sub> thin film as the solid electrolyte were fabricated. Al<sub>2</sub>O<sub>3</sub> plates with rough and smooth surfaces were used as the substrates of the sensors. X-ray diffraction analysis, atomic force microscope and scanning electron microscope were used to characterize the Li<sub>3</sub>PO<sub>4</sub> films. The sensing properties were investigated in the range of 500~5000 ppm CO<sub>2</sub> concentrations at 480 °C. Both the rough substrate sensor (rsensor) and the smooth substrate sensor (s-sensor) showed a good Nernst behavior. The output EMF of s-sensor showed a more stable signal than the r-senor. Response and recovery times of the r-sensor were 40 s and 75 s, and for the s-sensor they were 35 s and 60 s. The ΔEMF/decade values obtained from the r-sensor and s-sensor were 45 mV/decade and 55 mV/decade, respectively. It can be found that the Nernst's slop of the s-sensor was closer to the theoretically value. The results revealed that the substrate surface roughness may influence the characteristics of Li<sub>3</sub>PO<sub>4</sub> film and the response properties of the sensors to CO<sub>2</sub>.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"148 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123429261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liangliang Xu, T. Shi, S. Xi, Hu Long, Shiyuan Liu, Zirong Tang
{"title":"Metal-catalyst free integration of SiO2 nanowires into carbon MEMS","authors":"Liangliang Xu, T. Shi, S. Xi, Hu Long, Shiyuan Liu, Zirong Tang","doi":"10.1109/NEMS.2013.6559833","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559833","url":null,"abstract":"This paper presents an innovative technique of integrating silica nanowires to photoresist-derived carbon microelectromechanical systems (C-MEMS) on silicon substrate. The silica nanowires were synthesized through thermal treatment in a tube furnace at 1200 °C under a gaseous environment of N2 and H2. The stiff morphology and radicalized distribution around carbon posts of nanowires was observed, which was different from much of the previous studies. High-temperature annealing and meticulous-controlled pyrolying atmosphere could be the causes of the formation of unusual SiO2/C-MEMS integrated structures.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127837316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. T. Stamm, Andrew S. Trickey-Glassman, Linan Jiang, Y. Zohar
{"title":"Quantitative characterization of specific targeting of tumor cells by antibody-functionalized particles","authors":"M. T. Stamm, Andrew S. Trickey-Glassman, Linan Jiang, Y. Zohar","doi":"10.1109/NEMS.2013.6559916","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559916","url":null,"abstract":"Receptor-ligand binding has been one of the more popular approaches to specifically targeting tumor cells. In this work, targeting efficiency was quantitatively characterized using silica particles functionalized with EpCAM antibodies and EpCAM-expressing BT-20 breast cancer cells. The effects of incubation time and particle concentration on the number of functionalized particles bound to target cells were experimentally investigated. The number of bound particles was found to increase with particle concentration, but not necessarily with incubation time. While particle desorption and cellular loss of binding affinity in time seem to be negligible, cell-particle-cell interaction was identified as the limiting mechanism for the number of particles bound to target cells. The current findings suggest that separation of a bound particle from a cell may be detrimental to cellular binding affinity.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122706000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Jacot-Descombes, M. Gullo, V. Cadarso, M. Mastrangeli, J. Brugger
{"title":"Polymeric hemispherical pico-liter micro cups fabricated by inkjet printing","authors":"L. Jacot-Descombes, M. Gullo, V. Cadarso, M. Mastrangeli, J. Brugger","doi":"10.1109/NEMS.2013.6559918","DOIUrl":"https://doi.org/10.1109/NEMS.2013.6559918","url":null,"abstract":"The fabrication of precise hemispherical shape is challenging with standard planar lithography techniques. A suitable alternative is the fabrication by inkjet printing. This paper presents a method based on drop-on-demand inkjet printing on pre-patterned silicon substrates allowing the controlled fabrication of SU-8 hemispherical cup-like structures with inner cavities of sub-nano-liter volumes. Examples are given for cups of 100μm in diameter with inner cavity volumes of 5pL, 20pL and 45pL. Arrays of 360 hemispherical SU-8 cups have been fabricated with a yield above 96%. The 4% of exceptions are also described and shown as a method for achieving almost complete SU-8 spheres.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"258 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123967125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}