Laser additive manufacturing technology in titanium 64 implant of microstructure fabrication and analysis

S. Lin, C. C. Lin, D. Lin, C. Chuang
{"title":"Laser additive manufacturing technology in titanium 64 implant of microstructure fabrication and analysis","authors":"S. Lin, C. C. Lin, D. Lin, C. Chuang","doi":"10.1109/NEMS.2013.6559801","DOIUrl":null,"url":null,"abstract":"Laser additive manufacturing technology is very attractive for industry applications due to the characterizations of rapid manufacture, flexible parameters select, customize, and complex 3D object fabricate. In this article, an EOS M-type direct metal laser sintering (DMLS) system was used to manufacture for customized hip implant with an IPG fiber laser. The part building process takes place inside an enclosed chamber filled with argon gas to minimize oxidation powdered material. We are successful design and producing an implant of imitation bone microstructure in titanium alloy. From the SEM analysis image, an approximately 100% dense surface has be observed. The mainly composition of selective laser additive manufacturing product are acicular structure of alpha-phase titanium. X-ray diffraction patterns also are observed the alpha-phase and beta-phase mixture. This customized hip implant is used to clinical application for replacement the golden retriever's femoral head, and it get good results. Imitation bone structure can promote the biocompatible of titanium material and bone.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Laser additive manufacturing technology is very attractive for industry applications due to the characterizations of rapid manufacture, flexible parameters select, customize, and complex 3D object fabricate. In this article, an EOS M-type direct metal laser sintering (DMLS) system was used to manufacture for customized hip implant with an IPG fiber laser. The part building process takes place inside an enclosed chamber filled with argon gas to minimize oxidation powdered material. We are successful design and producing an implant of imitation bone microstructure in titanium alloy. From the SEM analysis image, an approximately 100% dense surface has be observed. The mainly composition of selective laser additive manufacturing product are acicular structure of alpha-phase titanium. X-ray diffraction patterns also are observed the alpha-phase and beta-phase mixture. This customized hip implant is used to clinical application for replacement the golden retriever's femoral head, and it get good results. Imitation bone structure can promote the biocompatible of titanium material and bone.
激光增材制造技术在钛64植入体中的微结构制备及分析
激光增材制造技术具有制造速度快、参数选择灵活、可定制化、三维物体加工复杂等特点,在工业应用中具有很大的吸引力。本文采用EOS m型直接金属激光烧结(DMLS)系统,利用IPG光纤激光器制造定制髋关节假体。零件制造过程在一个充满氩气的封闭室中进行,以尽量减少氧化粉末材料。我们成功地设计并生产了一种仿骨微结构钛合金种植体。从SEM分析图像中,可以观察到大约100%的致密表面。选择性激光增材制造产品的主要成分是针状结构的α相钛。x射线衍射图也被观察到相和相混合物。该定制髋关节假体用于金毛猎犬股骨头置换术的临床应用,取得了良好的效果。仿骨结构可促进钛材料与骨的生物相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信